Exploitfing Symmetries
N Variational QML

JOHANNES JAKOB MEYER rorR QUANTUM FORMALISM

FU BERLIN W @JI_XYZ




Based on arXiv:2205.06217

Data symmetry Physical considerations

Embedding
Exploiting symmetry in variational quantum machine learning f
Johannes Jakob Meyer,! Marian Mularski,"? Elies Gil-Fuster,"? Antonio AA
1 . T & e s o 152 . ¥ 1,43 \ ( h
Anna Mele," Francesco Arzani,” Alissa Wilms," = and Jens Eisert™* Gl ) e
' Dahlem Center for Complexr Quantum Systems, Freie Universitdt Berlin, 14195 Berlin, Germany \'t ~— of symmetry
2Porsche Digital GmbH, 71636 Ludwigsburg, Germany s U
3 Fraunhofer Heinrich Hertz Institute, 10587 Berlin, Germany L 8 )
* Helmholtz-Zentrum Berlin fiir Materialien und Energie, 14109 Berlin, Germany Ansatz with VL Ansatz with
(Dated: May 12, 2022) standard p \ equivariant
gateset Gate symmetrization gateset
—_ 1 —
g TulX] = EZUSXUJ 7EJ[g]
L sES )



https://arxiv.org/abs/2205.06217

QML for Classical Data

> Classical ML has been extremely useful — can we still improve
using quantum models?

> If we want to perform quantum learning on classical data, the
data needs to be embedded in a guantum computer

> How to do this in a sensible way is of central importance for
QML on classical data
> An embedding needs to be
> Practical
> Scalable
> Useful



Variational Re-Uploading Models
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How should we Strong need for
» design the data embeddings? —> informed

» parametrize the trainable layers? constructions!



The Case for Symmetry

Cute Cool



The Case for Symmetry

Label invariance under
a symmetry group

y(Vilx]) =y(x) Vs € S

Cute
Original representation
sV, € Rixd
Cool
/ f \ \ Extensively studied in classical
q ¥ machine learning in the field of

¢ 0= Geometric Deep Learning




Symmetries and Embeddings

Data Embedding Symmetry
U: R — SU(2")(~ C2"*2") V,: R — R?
x — U(x) x — Vs|x|

How do symmetries
V. o manifest when data
< ' iIs embedded in a

Rd U N SU(Z”) quantum circuit?




A Toy Example
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Equivariant Embeddings
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Induced Representations

> Equivariant embeddings induce representations

> The existence of an induced representation depends on the
symmetry group, its representation on the level of the data

and on the particular embedding
> For all symmmetry groups a trivial embedding exists
Ux)=1 = Us=1IforallsesS

» Faithful embeddings can only exist for groups that have
faithful finite-dimensional unitary representations



Discrete Example

Three coordinates with

permutation symmetry L = (3317 L2, '563)

Embedding through mutually commuting Paulis

U(.’L‘) _ e—z:chXe—zazgYYe—w:;gZZ

Exchange through generalized Hadamard gates
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Confinuous Equivariant Embeddings
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Continuous Example

3D Vector with

O(3) Symmetry L = (2131, X9, :133)

O(3) ~SO(3))x|Zo]

Embedding on two qubits
U(zx) = o—i(@1 Xtz Y +a3Z) X |

Induced representation [SO(S)}:[SU(Q)J
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INnvariant Models

How do we achieve
label invariance for
the whole model?
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EqQuivariant Layers
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Layers need to commute with
the Induced representation
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Invariant Model Recipe y(Vilz]) =y(x) Vs € S

Equivariant

embeddings
Invariant Invariant
Input state U(V,|z]) = UJU(:U)US olbservable
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Equivariant Gatesets

How to construct equivariant layers?

l

Exploit the fact that concatenations
of equivariant gates are again
equivariant

l

Motivates equivariant gatesets

Regular gateset
G={G1,Ga,...}

l

Group twirl
1
TG = = > U.GU!
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Equivariant gateset
TGl ={T|G1],T|G2],...}



Tic Tac Toe
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Symmetry Encoding Equivariant gateset



Tic Tac Toe

Compare a regular re-
uploading model
with a symmetrized
one

\

Run sweeps over
different depths and
randomized
architectures

l

Invariant models
have similar
performance in
training but much
better generalization
performance

/

Invariant models generically have

better generalization



Further Results

> Analysis of different kinds of symmetries, both continuous and
discrete

> Discussion of problems that can surface during the
construction

> Further numerical experiments showcasing improved
generalization

> We show that our technigues can also be applied to VQE and
mitigate Barren Plateaus



Summary

> We need informed choices for parametrizations of variational
gquantum learning models

> Label invariance under a symmetry group provides such
INformation

> We show if and how such information can be used to
produce invariant quantum learning models

> The resulting models have less parameters and numerical
experiments confirm their better generalization



Some Open Questions

> Are variational re-uploading models a reasonable choice for
data embedding and prediction?

> What other kinds of data embeddings would be reasonable?

> |Is QML for classical data a good idea in the first place? Why
would embedding into the unitary group be good for classical
ML tasks?
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