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What is Geometry?

o geometry

/d31 pmitri/
noun

the branch of mathematics concerned with the properties and relations of points, lines, surfaces,
solids, and higher dimensional analogues.

Geometry of guantum states

Where are guantum states in
relation to each other?



Parametrized Quantum States

Parametrization Measurement
L7 @
e %

0 p(6) prm(0)

Encountered in
Variational Quantum Algorithms
Quantum Metrology
Quantum Optimal Control
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Distances Between Parametrized States

We want to understand parametrized quantum states in parameter
space. One way to do so is via distances

Perform a pullback of a distance between quantum states
d(0,8") = d(p(0), p(0"))
or between the output probability distributions

dpm(0,0") = d(pm(6), pra(0"))

We require d(0,0') >0, d(0,0) = 0, and differentiability.



Small Changes

What happens in the local neighbourhood of the parameter 67

Distance from this point

¥ Mmeasured with the fidelity
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Small Changes

What happens in the local neighbourhood of the parameter 67

Mathematically speaking, the Taylor expansion gives
1
d(6,0 4 6) = 55’%\4(9)(5 +O(||6]1°)

with the Hessian of the pullback distance relative to a fixed point in
parameter space @,

2
o d(6,0 +6)
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Information Matrices
The Hessian induces an inner product (8,48 ) 3 = 6 M&

With it we can measure
lengths |6]| = /{9, 6)
distances  d(8,8') = [|6 — &' = /(5 — &', — &)
angles  <1(8,8") = arccos((8,8")/||6][|8])

The Hessian contains information about the underlying guantum state, by
nature an information-theoretic object. We thus call it information matrix.



Classical Fisher Information Matrix

Use the KL divergence (relative entropy) for the pullback

And find the classical Fisher information matrix (CFIM) with entries

1 Opi(0) Opi(0)
(9) a Z PZ(Q) 8l¢9@ alHJ

INtuition: the classical Fisher information quantifies
how much a change of parameters changes the
underlying probability distribution



How can we calculate 1t?

To calculate the classical Fisher information matrix, we need

__— Output of experiment (histogram)
output probabilities

pl(g) —,_ Can also use more sophisticated technigues:
Bayesian approach, Machine Learning

_— Finite differences
their derivatives

a'pl 7
‘ ( ) T Parameter shift rule



Fun Fact: Unigueness

What happens if we used a different distance?

Theorem (Morozova & Chentsov):

The information matrix associated to any monotonic distance measure
between probability distributions will be a positive scalar multiple of the
classical Fisher information matrix

Monotonicity: d(T|p], T|q]) < d(p, q) for all stochastic maps T



Quantum Fisher Information Matrix (Pure States)

Use the fidelity distance for the pullback

And find the quantum Fisher information matrix (QFIM) with entries

Fij(8) = 4Re[(0:1(0)|0;1(0)) — (9:4(0)|1(8) X (0)|0;4(6))]

INntuition: the quantum Fisher information guantifies
how much a change of parameters changes the
underlying quantum state



Calculation (Pure States)

For parameters that are encoded via parallel Hamiltonian evolution

Fij(0) = 4[((0)|HiH;|1(0)) — (1(0)|Hi|1(8) X (0)|Hj|1(6)))

We can also use perturbations of the fidelity distance itself and tricks using
the parameter-shift rule. To get approximation on the matrix level, an
analogue of SPSA can be used.



Calculation (Noisy States)

N principle, full tomography is necessary to calculate the guantum Fisher
iInformation for noisy states

Variational methods have been proposed, but with high overheads and
relying on the success of variational subroutines

An alternative is to approximate the guantum Fisher information, e.g. via
the truncated quantum Fisher information or hierarchical quantities that

can be computed from classical shadows



Fun Fact: Non-Unigueness

Theorem (Petz):

There are infinitely many information matrices arising from monotonic
distances between gquantum states.

Monotonicity: d(®|p], ®|c]) < d(p, o) for all guantum channels ®

LOur® guantum Fisher information matrix is also known as SLD-QFIM, and
it Is the smallest of the bunch.



Classical and Quantum Fisher Information

Monotonicity of the underlying distance measure implies that

I(T[p(0)]) < I(p(@)) for all stochastic maps T

F(®[p(0)]) < F(p(B)) forallguantum channels ¢

But measurements are also channels and the guantum Fisher information
for a classical state is equal to the classical Fisher information. Therefore

FM|p(0)]) = I(M[p(0)]) < F(p(6))

The guantum Fisher information is therefore an upper bound for the
classical Fisher information matrix arising from any measurement.



Roles of Classical and Quantum Fisher Information

F(0)

QUANTUM FISHER INFORMATION

(6)

CLASSICAL FISHER INFORMATION
Quantifies ultimate limits for

a specific underlying state Quantifies behaviour for

a fixed measurement
Can tell us a lot about the

quantum effects influencing Extremely relevant in practice,

our experiments as we always have to fix some
sort of measurement



Application 1: Quantum Metrology

Physical quantities (magnetic fields, energies, ...) ©» metrology
need to be measured accurately /mt trolad3i

Study how quantum effects can help o

the scientific study of measurement.

Probe Encoding Output
State Evolution Measurement Distribution

p — E(@) — M — pi(®)



Gathering Intuition

+) |—Fe @< |— )

THEORY EXPERIMENT
¢ = 0.9 :
N
+) -) o
|+) |—)
b =0.5 |
e ¢»=11+0.1



Cramer-Rao Bound

Formally, we construct an estimator for the physical guantity from the
output probability distribution

p(@) — @ unbiased if E{¢} = ¢

The Crameéer-Rao bound limits the precision of any unbiased estimator

“Iu(@) > F(e)!

Covlp| > —
n

Tr{Cov|p|} = MSE|¢]



Application 2: Quantum Natural Gradient
Gradient descent is a general-purpose method to minimize a cost function
p(t+1) — g(t) _ UVC(O(t))

We can reformulate the gradient update as an optimization problem

oli+1) _ argéniﬂ {[(’9 B g(t)’VC(O(t)»] [ |9 — 0" |2]}

Minimal for update Regularisation to
opposite to gradient avoid overstepping



Quantum Natural Gradient Update

But we started this talk realizing that measuring distances between
parmeters makes more sense it we take the pullback of a distance
between quantum states! Replacing

|9 —0W )2 with ds(9,00) ~ (9 — 0T FOD) (9 —0")
IN the optimization yields the quantum natural gradient update step

p(tt1) —_ g(t) _ n}*(g(t))—lvc(g(t))

This update now takes the underlying geometry of the parametrized
guantum state into account



Quantum Natural Gradient Helps
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Outlook

Fisher information is a very versatile tool that has found a lot of cool
applications in various fields, for example theoretical guantum
iNnformation, error correction and resource theories

Parametrized quantum states are fundamental to NISQ applications, so |
expect many more interesting applications of Fisher information

Many open questions remain and much more work is to be done!



Thank you for your attention!
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