Quantum metrology in the finite-sample regime JOHANNES JAKOB MEYER FU BERLIN QUANTUM INFORMATION SEMINAR UNIVERSITY OF WARSAW ### Based on arXiv:2307.06370 #### Quantum metrology in the finite-sample regime Johannes Jakob Meyer, ¹ Sumeet Khatri, ¹ Daniel Stilck França, ^{1,2,3} Jens Eisert, ^{1,4,5} and Philippe Faist ¹ Dahlem Center for Complex Quantum Systems, Freie Universität Berlin, 14195 Berlin, Germany ² Department of Mathematical Sciences, University of Copenhagen, 2100 København, Denmark ³ Ecole Normale Superieure de Lyon, 69342 Lyon Cedex 07, France ⁴ Helmholtz-Zentrum Berlin für Materialien und Energie, 14109 Berlin, Germany ⁵ Fraunhofer Heinrich Hertz Institute, 10587 Berlin, Germany (Dated: July 14, 2023) ## Traditional Quantum Metrology Want unbiased estimate $$\mathbb{E}[\hat{t}] = t$$ with low variance Cramér-Rao Bound $$\operatorname{Var}(\hat{t}) \ge \frac{1}{\mathcal{F}(t)}$$ - Inherently asymptotic - Assumes parameter is already approximately known - Application difficult to justify in the finite-sample regime ## Single-shot Quantum M ### **Estimation Tolerance** What is the probability of successful estimation? ## Single-shot Quantum Metrology Bayesian success probability $$\eta = \int d\mu(t) \int_{-\delta}^{\delta} d\tau \operatorname{Tr}[\rho(t)Q(t+\tau)]$$ Minimax success probability $$\overline{\eta} = \min_{t} \int_{-\delta}^{\delta} d\tau \operatorname{Tr}[\rho(t)Q(t+\tau)]$$ ## Optimal Measurements **Optimal** minimax success probability $$\overline{\eta}^* = \max_{Q(\hat{t})} \left\{ \min_t \int_{-\delta}^{\delta} d\tau \operatorname{Tr}[\rho(t)Q(t+\tau)] \right\}$$ Constitutes a **semi-infinite program**, think a continuous semi-definite program - > We give a dual formulation without duality gap - > We generalize it to the parametrized channels where we optimize over combs or strategies with indefinite causal order - > We also give post-processing strategies for fixed measurements ## Fixed Measurements Parametrized state Fixed measurement Post-processing Optimal post-processing is given by the smoothed maximum a-posteriori estimator $$\tau_{\text{SMAP}}^*(\lambda) = \underset{t}{\operatorname{argmax}} \int_{t-\delta}^{t+\delta} d\mu(\tau) \operatorname{Tr}[\rho(\tau)M(\lambda)]$$ ## Connection to Hypothesis Testing Metrology problem ## Connection to Hypothesis Testing Multi-hypothesis testing problem We conclude that $$\overline{\eta} \leq \overline{P}_s(\{\rho(t_i)\})$$ as long as $|t_i - t_j| > 2\delta$ ## The PAC Metrology Framework $\overline{\eta}$ #### **SUCCESS PROBABILITY** What is the probability of obtaining an estimate within a fixed tolerance? $\overline{\delta}$ #### **ESTIMATION TOLERANCE** What is the smallest tolerance that still guarantees a fixed success probability? \overline{n} #### SAMPLE COMPLEXITY How many copies of a state do I need to guarantee a fixed success probability and tolerance? ### Estimation Tolerance So far, we analyzed the success probability at fixed tolerance. But in applications, we often care about the achievable precision at fixed success probability. Minimax estimation tolerance $$\overline{\delta}(\overline{\eta}) = \inf \left\{ \frac{\delta'}{\delta} \ge 0 \ \middle| \ \overline{\eta} \le \min_{t} \int_{-\delta'}^{\delta'} d\tau \ \operatorname{Tr}[\rho(t)Q(t+\tau)] \right\}$$ ## Finite-sample Cramér-Rao bound Cramér-Rao bound $$\sigma(\hat{t}) \ge \frac{1}{\sqrt{\mathcal{F}(t)}}$$ Our bound $$\overline{\delta} \ge \frac{O\left(\sqrt{\log \frac{1}{1-\overline{\eta}}} - q \log \frac{1}{1-\overline{\eta}}\right)}{\sqrt{\min_{t} \mathcal{F}(t)}}$$ In the i.i.d. case $$q = O\left(\frac{1}{\sqrt{n}}\right)$$ ## Sample Complexity What if we care about both the achievable precision and the success probability? Then we have to ask how many copies of a state we need to achieve it. Minimax sample complexity $$\overline{n}(\overline{\eta}, \overline{\delta}) = \min \left\{ n' \in \mathbb{N} \mid \overline{\eta} \leq \min_{t} \int_{-\overline{\delta}}^{\overline{\delta}} d\tau \operatorname{Tr}[\rho^{\otimes n'}(t)Q_{n'}(t+\tau)] \right\}$$ ### Phase estimation Local evolution of an ensemble of spins under the same phase Hamiltonian For the regular phase Hamiltonian and $t \in [0, 2\pi)$ this yields a **covariant** set of states ## Optimal Measurement We show that the **pretty good measurement** is optimal for covariant state sets We use this result to obtain a closed-form solution for the minimax success probability $$\overline{\eta}^*(\delta, \psi) = \sum_{\lambda, \lambda'} |\psi_{\lambda}| |\psi_{\lambda'}| \frac{\sin(\delta(\lambda - \lambda'))}{\pi(\lambda - \lambda')}$$ $$H = \sum_{\lambda} \lambda \Pi_{\lambda}$$ $$|\psi\rangle = \sum_{\lambda} \Pi_{\lambda} |\psi\rangle = \sum_{\lambda} \psi_{\lambda} |\psi_{\lambda}\rangle$$ ## Comparison of Probe States The closed-form solution factilitates a numerical comparison of different probe states $$|\text{GHZ}_n\rangle = \frac{1}{\sqrt{2}}(|0\rangle + |n\rangle)$$ $$|\mathrm{HB}_n\rangle = \frac{1}{\sqrt{n+1}}(|0\rangle + |1\rangle + |2\rangle + \dots + |n\rangle)$$ ## Success Probability ### Estimation Tolerance ## Comparison with QCRB $$\overline{\eta} = \operatorname{erf}(1/\sqrt{2})$$ ## Further Results in the Paper - > We connect our quantities to single-shot entropy measures - We lift the hypothesis testing connection to quantum channels with different access models - We discuss many possible extensions of our results and definitions, e.g. the multi-parameter case - > We give an overview of open questions ## Open Questions - What measurements (i.e. POVMs) give good out-of-the-box performance guarantees? Pretty good measurement? - Improved finite-sample analogues of the Cramér-Rao bound - > Understanding the advantages of adaptive processing and entanglement - What are the admissible scalings with mixed asymptotics? - > How do noise and error correction fit into this picture? ## Summary - > We give new tools to understand quantum metrology in the single-shot regime - Our framework is very close to quantum information theory both in tools as in results - A plethora of open questions ranging from practically oriented to completely information-theoretic - An exciting opportunity to explore new directions in quantum metrology! # Thank you for your attention! Slides arXiv:2307.06370