Quantum metrology in the finite-sample regime

JOHANNES JAKOB MEYER FU BERLIN QIP 2024 arXiv:2307.06370

Based on arXiv:2307.06370

Quantum metrology in the finite-sample regime

Johannes Jakob Meyer, ¹ Sumeet Khatri, ¹ Daniel Stilck França, ^{1,2,3} Jens Eisert, ^{1,4,5} and Philippe Faist ¹ Dahlem Center for Complex Quantum Systems, Freie Universität Berlin, 14195 Berlin, Germany ² Department of Mathematical Sciences, University of Copenhagen, 2100 København, Denmark ³ Ecole Normale Superieure de Lyon, 69342 Lyon Cedex 07, France ⁴ Helmholtz-Zentrum Berlin für Materialien und Energie, 14109 Berlin, Germany ⁵ Fraunhofer Heinrich Hertz Institute, 10587 Berlin, Germany (Dated: July 14, 2023)

Quantum Metrology

GOAL

Devise a protocol that estimates the phase as well as possible

PHASE ESTIMATION

Local evolution of an ensemble of spins under the phase Hamiltonian

$$H = \frac{1}{2} \sum_{i=1}^{n} Z_i$$

LIMITATIONS OF PRACTICAL METROLOGY

- Low numbers of quantum systems
- Slow operation speed of certain platforms
- Drift of the system parameters

Traditional Quantum Metrology

FIGURE OF MERIT

- Mean squared error of the estimate
- Equal to the variance if the estimate is exact in expectation

QUANTUM FISHER INFORMATION

$$F(\rho(t), \rho(t+\tau)) =: 1 - \frac{1}{4}\mathcal{F}(t)\tau^2 + O(\tau^3)$$

CRAMÉR-RAO BOUND¹

$$\operatorname{Var}(\hat{t}) \ge \frac{1}{|\mathcal{F}(t)|}$$

WHAT ABOUT THE FINITE-SAMPLE REGIME?

- Cramér-Rao bound still constrains precision
- But it can be overly optimistic

Optimizing for large Fisher information can lead to poor finite-sample performance

¹Helstrom, *Phys. Lett. A* (1967)

Single-shot Quantum Metrology

SINGLE-SHOT FIGURE OF MERIT

- Define an estimation tolerance δ that should be achieved
- Determine the probability of estimating the parameter within that tolerance

SUCCESS PROBABILITY¹

$$\mathbb{P}[|t - \hat{t}| \le \delta]$$

We need a way to assign probabilities!

Single-shot Quantum Metrology

Bayesian success probability

$$\eta \coloneqq \int \mathrm{d}\mu(t) \int_{-\delta}^{\delta} \mathrm{d}\tau \operatorname{Tr}[\rho(t)Q(t+\tau)]$$

Minimax success probability

$$\overline{\eta} := \min_{t} \int_{-\delta}^{\delta} d\tau \operatorname{Tr}[\rho(t)Q(t+\tau)]$$

Optimal Success Probability

OPTIMAL SUCCESS PROBABILITY

Find the optimal way of estimating a parameter

$$\overline{\eta}^* \coloneqq \underbrace{\max_{Q(\hat{t})}} \left\{ \min_t \int_{-\delta}^{\delta} \mathrm{d}\tau \, \mathrm{Tr}[\rho(t)Q(t+\tau)] \right\}$$

Constitutes a
semi-infinite program¹
(think: a continuous
semi-definite program)

Similarly for **general protocols** involving quantum channels

Hypothesis Testing Bound

MOTIVATION

If states that are $O(\delta)$ apart are hard to distinguish, estimating the parameter to precision δ should also be hard

Perform a reduction from quantum metrology to multi-hypothesis testing

We can use the metrology protocol to solve the multi-hypothesis testing task

The success probability of quantum metrology cannot exceed the success probability of distinguishing states at times that are at least 2δ apart

The Single-Shot Metrology Framework

 $\overline{\eta}$

SUCCESS PROBABILITY¹

What is the probability of obtaining an estimate within a fixed tolerance?

 $\overline{\delta}$

ESTIMATION TOLERANCE²

What is the smallest tolerance that still guarantees a fixed success probability?

SAMPLE COMPLEXITY

How many copies of a state do I need to guarantee a fixed success probability and tolerance?

Single-shot Cramér-Rao Bound

MOTIVATION

The Cramér-Rao bound also constrains precision in the finite-sample case. Can we find a comparable bound in our framework?

CRAMÉR-RAO BOUND

$$\operatorname{Std}(\hat{t}) = \sqrt{\operatorname{Var}(\hat{t})} \ge \frac{1}{\sqrt{\mathcal{F}(t)}}$$

Due to worst-case nature of the minimax estimation tolerance SINGLE-SHOT CRAMÉR-RAO BOUND

$$\overline{\delta} \geq \frac{O\left(\sqrt{\log \frac{1}{1-\overline{\eta}}} - q \log \frac{1}{1-\overline{\eta}}\right)}{\sqrt{\min_{t} \mathcal{F}(t)}}$$

Quantifies how far we are from the asymptotic limit

In the i.i.d. case:
$$q = O\left(\frac{1}{\sqrt{n}}\right)$$

Optimal Phase Estimation

PHASE ESTIMATION

Local evolution of an ensemble of spins under the phase Hamiltonian

$$e^{-itZ/2}$$
 $e^{-itZ/2}$ $e^{-itZ/2}$

$$H = \frac{1}{2} \sum_{i=1}^{n} Z_i$$

We show that the **pretty good measurement**¹ is optimal for covariant state sets

We use this to obtain a **closed-form solution** for the minimax success probability

The closed-form solution factilitates a **numerical comparison of** different **probe states**

¹Holevo, Rep. Math. Phys. (1997)

Minimax Estimation Tolerance

Minimax Fstir

Standard $\sim \frac{1}{\sqrt{n}}$ Limit

Holland-Burnett State¹

$$|\mathrm{HB}_n\rangle = \frac{1}{\sqrt{n+1}}(|0\rangle + |1\rangle + |2\rangle + \dots + |n\rangle)$$

Has similar Fisher information as optimal state

Heisenberg $\sim \frac{1}{\pi}$

Summary

Understanding quantum metrology in the single-shot regime requires tools beyond the Cramér-Rao bound

We change our perspective from quantifying estimation variances to success probabilities

Allows to rigorously study the single-shot regime and gives a strong connection to quantum information theory

Opens up many **exciting directions** in a field that many considered "solved"!

What protocols give good out-of-the-box guarantees?

How do noise and error correction affect the single-shot performance?

How much can we gain with adaptive processing and entanglement?

Let us explore new directions in quantum metrology!

Thank you for your attention!

Slides

arXiv:2307.06370

