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Quanfum Metrology

GOAL
Devise a protocol that

estimates the phase as
well as possible

PHASE ESTIMATION
Local evolution of an
ensemble of spins under
the phase Hamiltonian
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LIMITATIONS OF PRACTICAL METROLOGY

> Low numbers of guantum systems

» Slow operation speed of certain platforms
> Drift of the system parameters
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Practical metrology
happens in the
finite-sample regime!



Tradifional Quantum Metrology
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CRAMER-RAO BOUND!

Var(t) > 130

Helstrom, Phys. Lett. A (1967)

estimate is exact in expectation

Q(H)

QUANTUM FISHER INFORMATION

F(p(t),p(t+71)) =1 - i]—"(t)ﬂ"2 + O(7%)

WHAT ABOUT THE FINITE-SAMPLE REGIME?
» Cramér-Rao bound still constrains precision
» But it can be overly optimistic

Optimizing for large Fisher information
can lead to poor finite-sample performance



Single-shot Quantum Metrology
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SUCCESS PROBABILITY!'
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ISee also Hayashi, J. Phys. A (2002), Walter and Renes, IEEE Trans. Inform. Theory (2014)
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We need a way to
assign probabilities!
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Single-shot Quantum Metrology

Prior distribution Adversary
— p(t)
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Bayesian success probability Minimax success probability
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Optimal Success Probability

OPTIMAL SUCCESS PROBABILITY
Find the optimal way of estimating a parameter
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min/ dr Tr[p(t)Q(t+T7)] ;
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/ \ Similarly for general protocols
Constitutes a involving quantum channels

semi-infinite program!
(think: a continuous
semi-definite program) " Lol
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Hettich and Kortanek, SIAM Review (1993)




Hypothesis Testing Bound

MOTIVATION

If states that are O(9) apart are hard to
distinguish, estimating the parameter
to precision § should also be hard

—_— guantum metrology to
Mmulti-hypothesis testing
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We can use the
metrology protocol to
solve the multi-
hypothesis testing task

The success probability of guantum metrology
cannot exceed the success probability of distin-
guishing states at times that are at least 24 apart

Perform a reduction from



The Single-Shot Metrology Framework

___ SUCCESS PROBABILITY!
’]7 What is the probability of obtaining an estimate

within g fixed tolerance?

ESTIMATION TOLERANCE?
What is the smallest tolerance that still guarantees

a fixed success probability?
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SAMPLE COMPLEXITY
n, How many copies of a state do | need to guarantee

a fixed success probability and tolerance?

See also Hayashi, J. Phys. A (2002), Walter and Renes, IEEE Trans. Inform. Theory (2014) 2See also Yang et al,, Proc. R. Soc. A (2018)



Single-shot Cramér-Rao Bound

MOTIVATION CRAMER-RAO BOUND

The Cramér-Rao bound also constrains 1
precision in the finite-sample case. Can we Std(f) — 4 /Var(f) >
find a comparable bound in our framework? W F(t)

~

(Quantifies how far we are from
the asymptotic limit
1

4 "\ SINGLE-SHOT CRAMER-RAO BOX inthe iid. case: q:o(_)
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nature of the minimax
estimation tolerance 1 1
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Optimal Phase Estimation

PHASE ESTIMATION
Local evolution of an

ensemble of spins under
the phase Hamiltonian
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Holevo, Rep. Math. Phys. (1997)

We show that the pretty good measurement!
Is optimal for covariant state sets

!

We use this to obtain a closed-form solution
for the minimax success probability

!

The closed-form solution factilitates a
numerical comparison of different probe states
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Minimax Estimation Tolerance

of success

[ Desired proba bility]
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Cannot be predicted by Fisher
\_ information! )

Holland and Burnett, Phys. Rev. Lett. (1993)



summary

Understanding guantum metrology in
the single-shot regime requires tools
beyond the Crameér-Rao bound

|

We change our perspective from
guantifying estimation variances to
success probabilities

|

Allows to rigorously study the single-shot
regime and gives a strong connection to
guantum information theory

Opens up Mmany exciting directions in
a field that many considered “solved”!

What protocols give good
out-of-the-box guarantees?

How do noise and error correction
affect the single-shot
performance?

How much can we gain with
adaptive processing and
entanglement?

14



LeT us explore new directions
N quantum metrology!
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Thank you for your atfention!
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