# Quantum metrology in the finite-sample regime

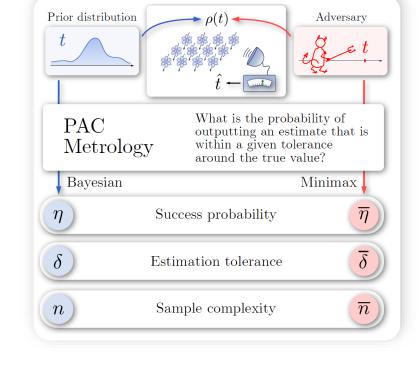
JOHANNES JAKOB MEYER FU BERLIN BEYOND IID 2023

©jj\_xyz

#### Based on arXiv:2307.06370

#### Quantum metrology in the finite-sample regime

Johannes Jakob Meyer, <sup>1</sup> Sumeet Khatri, <sup>1</sup> Daniel Stilck França, <sup>1, 2, 3</sup> Jens Eisert, <sup>1, 4, 5</sup> and Philippe Faist <sup>1</sup> Dahlem Center for Complex Quantum Systems, Freie Universität Berlin, 14195 Berlin, Germany <sup>2</sup> Department of Mathematical Sciences, University of Copenhagen, 2100 København, Denmark <sup>3</sup> Ecole Normale Superieure de Lyon, 69342 Lyon Cedex 07, France <sup>4</sup> Helmholtz-Zentrum Berlin für Materialien und Energie, 14109 Berlin, Germany <sup>5</sup> Fraunhofer Heinrich Hertz Institute, 10587 Berlin, Germany (Dated: July 14, 2023)





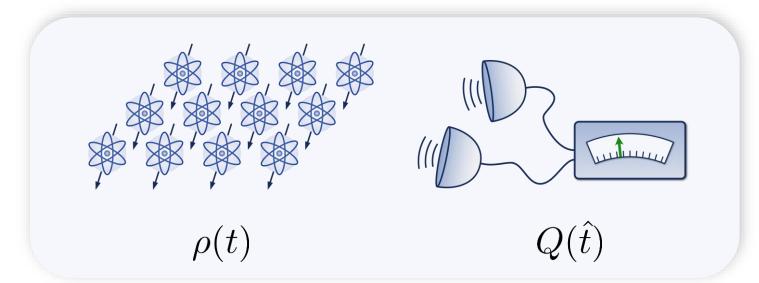








#### Traditional Quantum Metrology



Want unbiased estimate

$$\mathbb{E}[\hat{t}] = t$$

with low variance

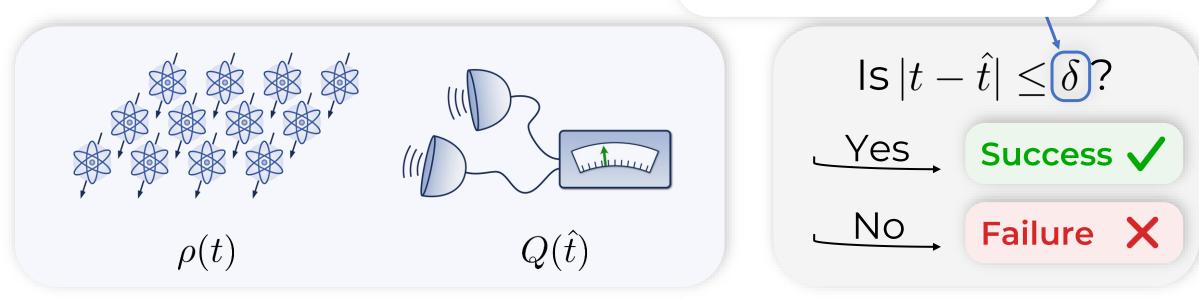
Cramér-Rao Bound

$$Var(\hat{t}) \ge \frac{1}{\mathcal{F}(t)}$$

- Inherently asymptotic
- Assumes parameter is already approximately known
- Application difficult to justify in the finite-sample regime

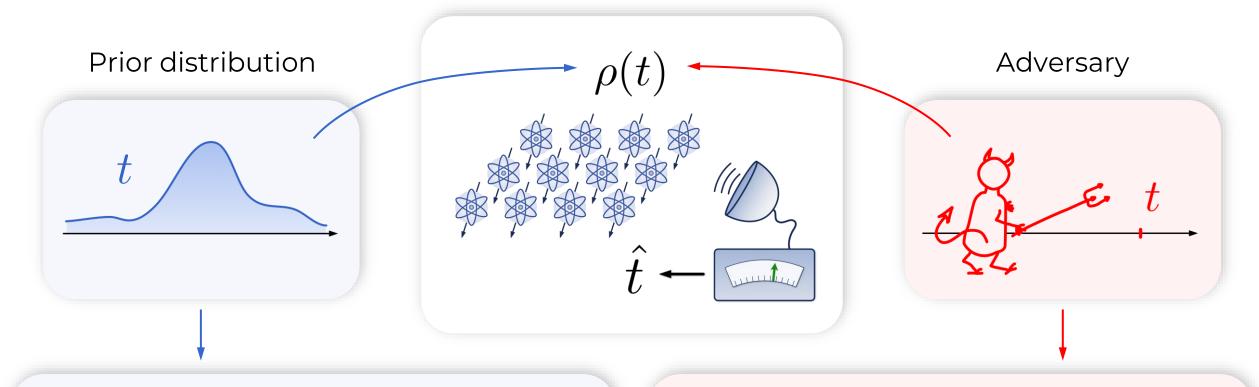
### Single-shot Quantum M

#### **Estimation Tolerance**



What is the probability of successful estimation?

### Single-shot Quantum Metrology



Bayesian success probability

$$\eta = \int d\mu(t) \int_{-\delta}^{\delta} d\tau \operatorname{Tr}[\rho(t)Q(t+\tau)]$$

Minimax success probability

$$\overline{\eta} = \min_{t} \int_{-\delta}^{\delta} d\tau \operatorname{Tr}[\rho(t)Q(t+\tau)]$$

#### Optimal Measurements

**Optimal** minimax success probability

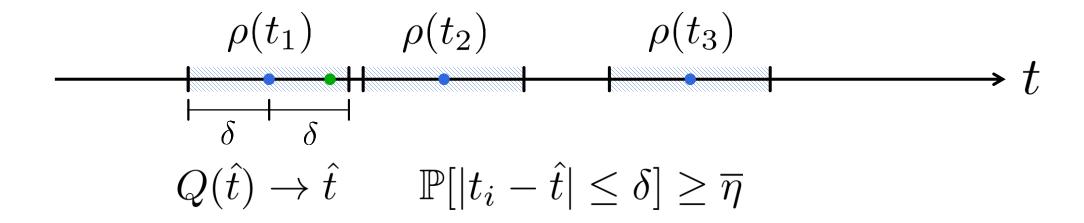
$$\overline{\eta}^* = \max_{Q(\hat{t})} \left\{ \min_{t} \int_{-\delta}^{\delta} d\tau \operatorname{Tr}[\rho(t)Q(t+\tau)] \right\}$$

Constitutes a **semi-infinite program**, think a continuous semi-definite program

- > We give a dual formulation without duality gap
- > We generalize it to the parametrized channels where we optimize over combs or strategies with indefinite causal order
- > We also give post-processing strategies for fixed measurements

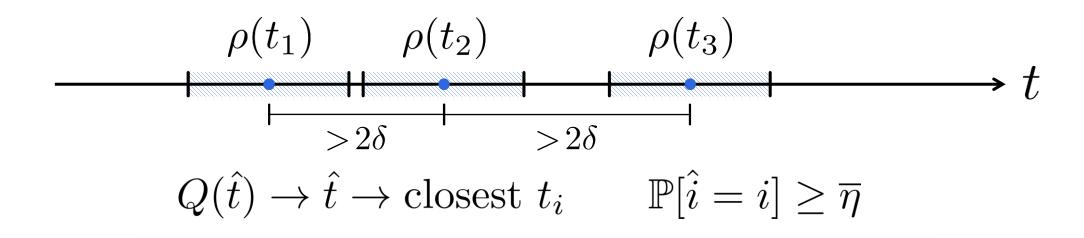
#### Connection to Hypothesis Testing

Metrology problem



#### Connection to Hypothesis Testing

Multi-hypothesis testing problem



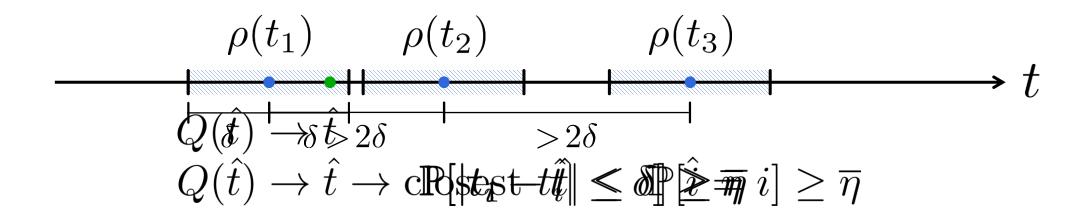
We conclude that

$$\overline{\eta} \leq \overline{P}_s(\{\rho(t_i)\})$$
 as long as  $|t_i - t_j| > 2\delta$ 

### Connection to Hypothesis Testing

Metrology problem

Multi-hypothesis testing problem



We conclude that

$$\overline{\eta} \leq \overline{P}_s(\{\rho(t_i)\})$$
 as long as  $|t_i - t_j| > 2\delta$ 

#### Asymptotics

Asymptotic rate at constant tolerance

$$\overline{R}(\delta, \rho) := \lim_{n \to \infty} -\frac{1}{n} \log \left(1 - \overline{\eta}(\delta, \rho^{\otimes n})\right)$$

Hypothesis testing bound implies

$$\overline{R}(\delta, \rho) \le \inf_{|t-t'|>2\delta} C(\rho(t), \rho(t'))$$

Chernoff Divergence

$$C(\rho, \sigma) \coloneqq -\inf_{0 \le s \le 1} \log \operatorname{Tr}[\rho^s \sigma^{1-s}]$$

### Asymptotics

We give the following achievable lower bound

$$\overline{R}(\delta, \rho) \ge \sup_{\{\mathcal{M}^{(n)}\}_{n \in \mathbb{N}}} \inf_{|t - t'| > 2\delta} \overline{R}(\rho(t), \rho(t'), \{\mathcal{M}^{(n)}\}_{n \in \mathbb{N}})$$

Hypothesis testing rate for a given measurement sequence

$$\overline{R}(\rho, \sigma, \{\mathcal{M}^{(n)}\}_{n \in \mathbb{N}}) \coloneqq \lim_{n \to \infty} -\frac{1}{n} \log \left( \overline{P}_e(\mathcal{M}^{(n)}[\rho^{\otimes n}], \mathcal{M}^{(n)}[\sigma^{\otimes n}] \right)$$

This allows us to compute the asymptotic rate in the commuting case

$$\overline{R}(\delta, \rho) = \inf_{|t-t'|>2\delta} C(\rho(t), \rho(t')) \text{ if } [\rho(t), \rho(t')] = 0 \text{ for all } t, t'$$

#### Optimal Tolerance

So far, we analyzed the success probability at fixed tolerance. But in applications, we often care about the achievable precision at fixed success probability.

Minimax estimation tolerance

$$\overline{\delta}(\overline{\eta}) = \inf \left\{ \frac{\delta'}{\delta} \ge 0 \ \middle| \ \overline{\eta} \le \min_{t} \int_{-\delta'}^{\delta'} d\tau \ \operatorname{Tr}[\rho(t)Q(t+\tau)] \right\}$$

#### Finite-sample Cramér-Rao bound

Cramér-Rao bound

$$\sigma(\hat{t}) \ge \frac{1}{\sqrt{\mathcal{F}(t)}}$$

Our bound

$$\overline{\delta} \ge \frac{O\left(\sqrt{\log \frac{1}{1-\overline{\eta}}} - q \log \frac{1}{1-\overline{\eta}}\right)}{\sqrt{\min_{t} \mathcal{F}(t)}}$$

In the i.i.d. case

$$q = O\left(\frac{1}{\sqrt{n}}\right)$$

### The PAC Metrology Framework

 $\overline{\eta}$ 

#### **SUCCESS PROBABILITY**

What is the probability of obtaining an estimate within a fixed tolerance?

 $\overline{\delta}$ 

#### **ESTIMATION TOLERANCE**

What is the smallest tolerance that still guarantees a fixed success probability?

 $\overline{n}$ 

#### SAMPLE COMPLEXITY

How many copies of a state do I need to guarantee a fixed success probability and tolerance?

#### Further Results in the Paper

- > We perform a finite-sample analysis of phase estimation
- > We connect our quantities to single-shot entropy measures
- We lift the hypothesis testing connection to quantum channels with different access models
- > We discuss many possible extensions of our results and definitions, e.g. the multi-parameter case
- > We give an overview of open questions

#### Open Questions

- > What measurements (i.e. POVMs) give good out-of-the-box performance guarantees? Pretty good measurement?
- Improved finite-sample analogues of the Cramér-Rao bound
- > Understanding the advantages of adaptive processing and entanglement
- Can we prove general achievability for the asymptotic rate presented in this talk?
- > What are the admissible scalings with mixed asymptotics?

#### Summary

- > We give new tools to understand quantum metrology in the single-shot regime
- Our framework is very close to quantum information theory both in tools as in results
- A plethora of open questions ranging from practically oriented to completely information-theoretic
- An exciting opportunity for quantum information theorists to make their mark on quantum metrology!

## Thank you for your attention!



Slides



arXiv:2307.06370



