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Traditfional Quantum Metrology
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What is the probability of
successful estimation?



Single-shot Quantum Metrology
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Bayesian success probability Minimax success probability
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Optimal Measurements

Optimal minimax success probability
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Constitutes a semi-infinite program,
think a continuous semi-definite program

» We give a dual formulation without duality gap

> We generalize it to the parametrized channels where we optimize
over combs or strategies with indefinite causal order

» We also give post-processing strategies for fixed measurements



Connection to Hypothesis Testing

Metrology problem
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Connection to Hypothesis Testing

Multi-hypothesis
testing problem
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Connection to Hypothesis Testing

Multi-hypothesis

Metrology problem testing problem
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Asymptotics

Asymptotic rate at constant tolerance Hypothesis testing bound implies
_ 1 _
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Chernoff Divergence
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Asymptotics

We give the following achievable lower bound

R(6,p) > sup inf R(p(t),p(t'), {M™},en)
(M)}, cn |t—t'|>20

Hypothesis testing rate for a given measurement sequence
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This allows us to compute the asymptotic rate in the commuting case

R(6,p)= inf C(p(t),p(t)) if [p(t), p(t")] = 0 for all ¢,t’

[t—t/|>26



Optimal Tolerance

So far, we analyzed the success probability at fixed
tolerance. But in applications, we often care about
the achievable precision at fixed success probability.

Minimax estimation tolerance
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Finite-sample Cramér-Rao bound

Crameér-Rao bound Qur bound

o(t) > L 5o 0, (\/Iog % ;@Og ﬁ)

F(t) Wm)

INn the 1.1.d. case

ol



The PAC Meftrology Framework

___ SUCCESS PROBABILITY
77 What is the probability of obtaining an estimate

within g fixed tolerance?

ESTIMATION TOLERANCE
What is the smallest tolerance that still guarantees

a fixed success probability?

Al

SAMPLE COMPLEXITY
How many copies of a state do | need to guarantee

a fixed success probability and tolerance?
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Further Results in The Paper

» We perform a finite-sample analysis of phase estimation

» We connect our quantities to single-shot entropy measures

> We lift the hypothesis testing connection to guantum
channels with different access models

» We discuss many possible extensions of our results and
definitions, e.g. the multi-parameter case

> We give an overview of open questions



Open Questions

» What measurements (i.e. POVMSs) give good out-of-the-box
performance guarantees? Pretty good measurement?

> Improved finite-sample analogues of the Cramér-Rao bound

» Understanding the advantages of adaptive processing and
entanglement

» Can we prove general achievability for the asymptotic rate
presented in this talk?

» What are the admissible scalings with mixed asymptotics?



summary

> We give new tools to understand quantum metrology in the
single-shot regime

» Our framework is very close to guantum information theory
both In tools as in results

» A plethora of open questions ranging from practically
oriented to completely information-theoretic

> An exciting opportunity for guantum information theorists to
make their mark on guantum metrology!
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