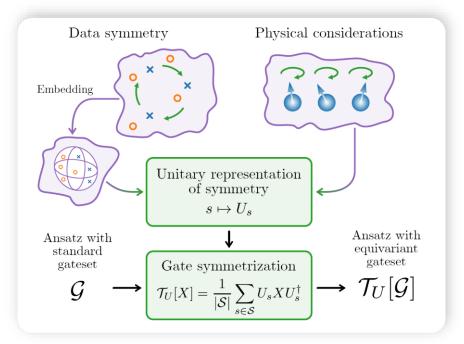
Exploiting Symmetries in Variational QML

JOHANNES JAKOB MEYER FU BERLIN FOR QUANTUM FORMALISM

Based on arXiv:2205.06217

Exploiting symmetry in variational quantum machine learning

Johannes Jakob Meyer,¹ Marian Mularski,^{1,2} Elies Gil-Fuster,^{1,3} Antonio Anna Mele,¹ Francesco Arzani,¹ Alissa Wilms,^{1,2} and Jens Eisert^{1,4,3} ¹Dahlem Center for Complex Quantum Systems, Freie Universität Berlin, 14195 Berlin, Germany ²Porsche Digital GmbH, 71636 Ludwigsburg, Germany ³Fraunhofer Heinrich Hertz Institute, 10587 Berlin, Germany ⁴Helmholtz-Zentrum Berlin für Materialien und Energie, 14109 Berlin, Germany (Dated: May 12, 2022)



QML for Classical Data

- > Classical ML has been extremely useful can we still improve using quantum models?
- If we want to perform quantum learning on classical data, the data needs to be embedded in a quantum computer
- How to do this in a sensible way is of central importance for QML on classical data
- > An embedding needs to be
 - > Practical
 - > Scalable
 - > Useful

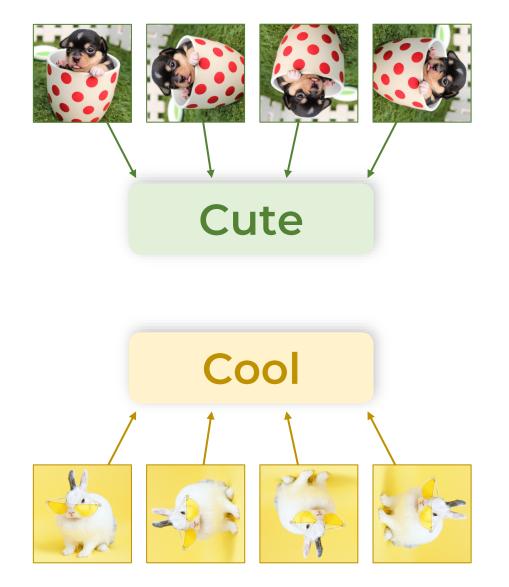
Variational Re-Uploading Models



How should we > design the data embeddings? > parametrize the trainable layers? Strong need for **informed** constructions!

The Case for Symmetry

The Case for Symmetry



Label invariance under a symmetry group $y(V_s[x]) = y(x) \ \forall s \in S$ Original representation $s \mapsto V_s \in \mathbb{R}^{d \times d}$

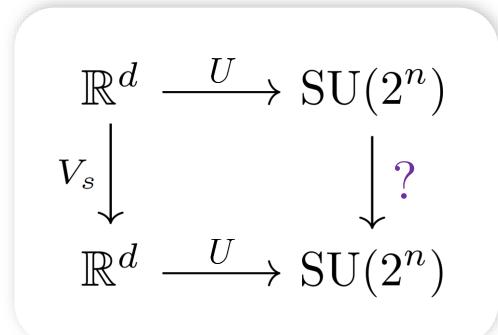
Extensively studied in classical machine learning in the field of **Geometric Deep Learning**

Symmetries and Embeddings

Data Embedding

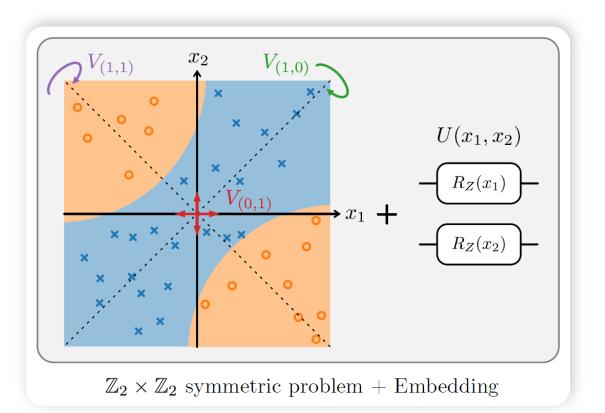
$$U: \mathbb{R}^d \to \mathrm{SU}(2^n) (\simeq \mathbb{C}^{2^n \times 2^n})$$
$$\boldsymbol{x} \mapsto U(\boldsymbol{x})$$

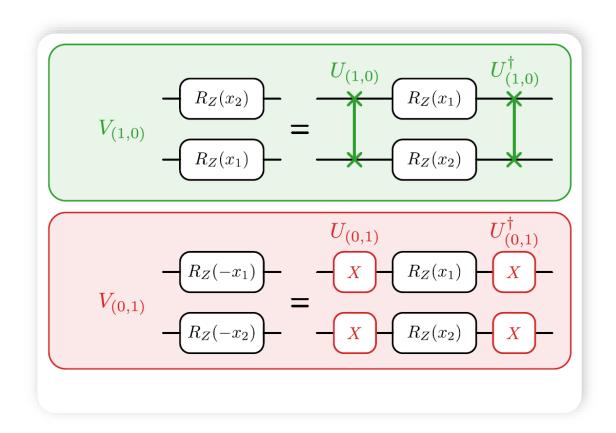
Symmetry
$$V_s \colon \mathbb{R}^d o \mathbb{R}^d$$
 $oldsymbol{x} \mapsto V_s[oldsymbol{x}]$



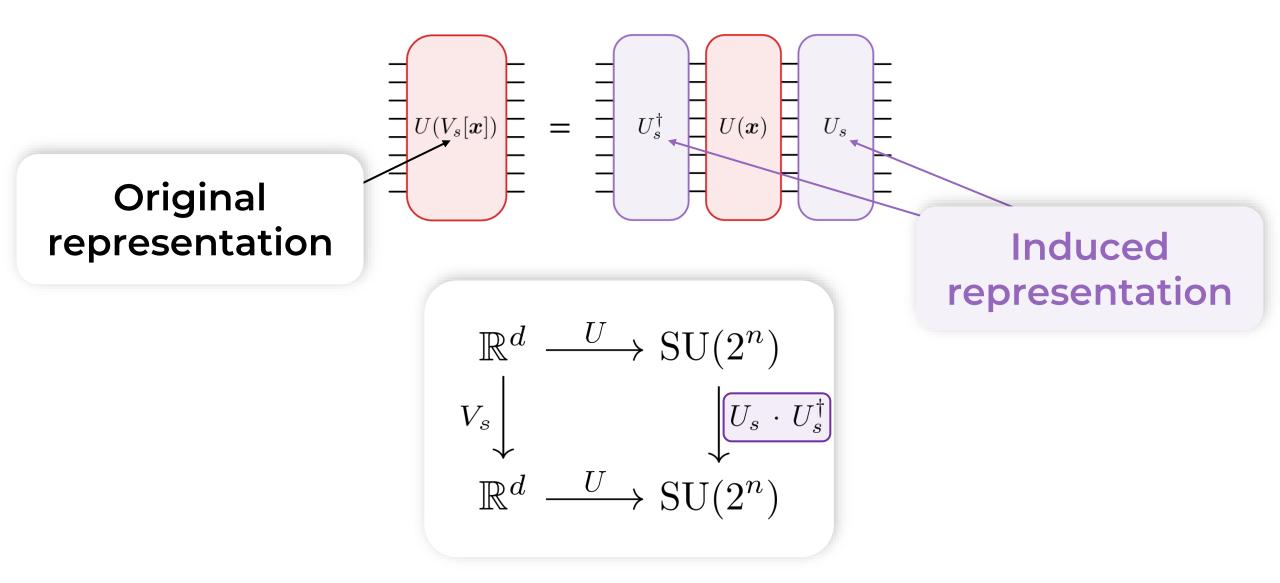
How do symmetries manifest when data is embedded in a quantum circuit?

A Toy Example





Equivariant Embeddings



Induced Representations

> Equivariant embeddings induce representations

- The existence of an induced representation depends on the symmetry group, its representation on the level of the data and on the particular embedding
- > For all symmetry groups a trivial embedding exists

$$U(\boldsymbol{x}) = \mathbb{I} \implies U_s = \mathbb{I} \text{ for all } s \in \mathcal{S}$$

 Faithful embeddings can only exist for groups that have faithful finite-dimensional unitary representations

Discrete Example

Three coordinates with permutation symmetry

$$\boldsymbol{x} = (x_1, x_2, x_3)$$

Embedding through mutually commuting Paulis $U(\pmb{x}) = e^{-ix_1XX}e^{-ix_2YY}e^{-ix_3ZZ}$

Exchange through generalized Hadamard gates

$$1 \leftrightarrow 2 \colon H_{XY} = e^{-i\frac{\pi}{2\sqrt{2}}(X+Y)}$$

Continuous Equivariant Embeddings

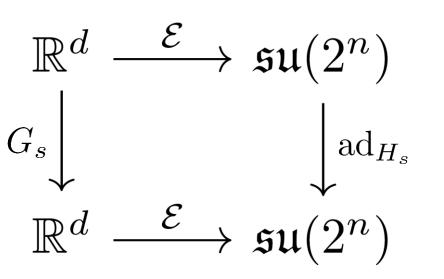
Data embedding

$$U(\boldsymbol{x}) = e^{-i\mathcal{E}(\boldsymbol{x})}$$

Data embedding `into Lie algebra

$$V_s = e^{G_s}$$

Original representation



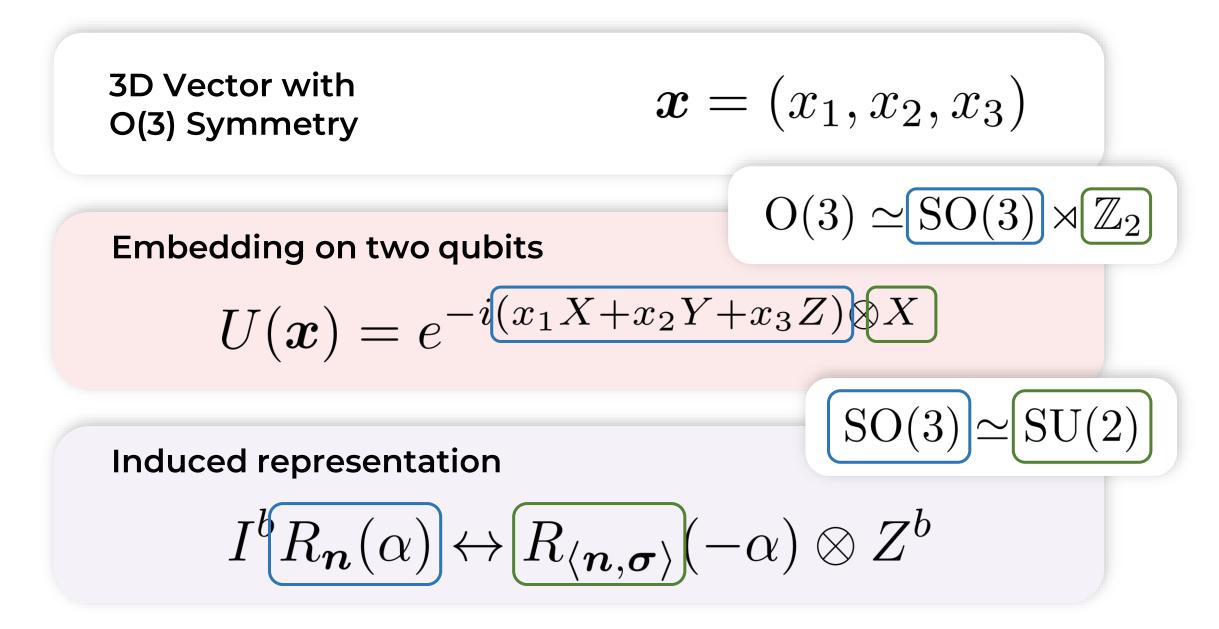
$$W_s = U_s \cdot U_s^{\dagger}$$
$$= \operatorname{Ad}_{U_s}$$
$$= e^{\operatorname{ad}_{H_s}}$$

Induced representation

 $\mathcal{E}G_s = \operatorname{ad}_{H_s}\mathcal{E}$

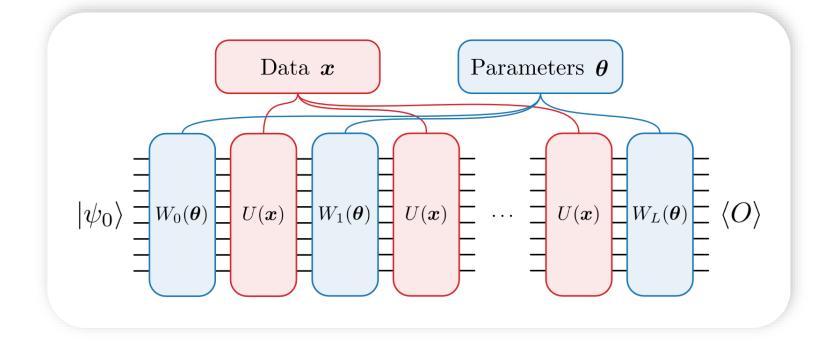
Feasibility condition

Continuous Example

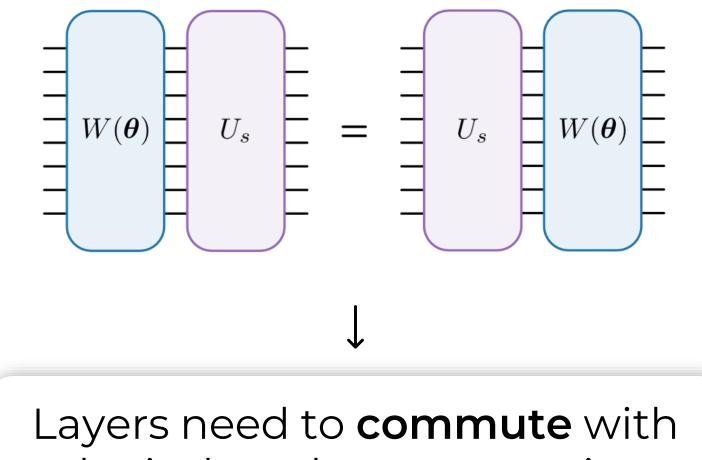


Invariant Models

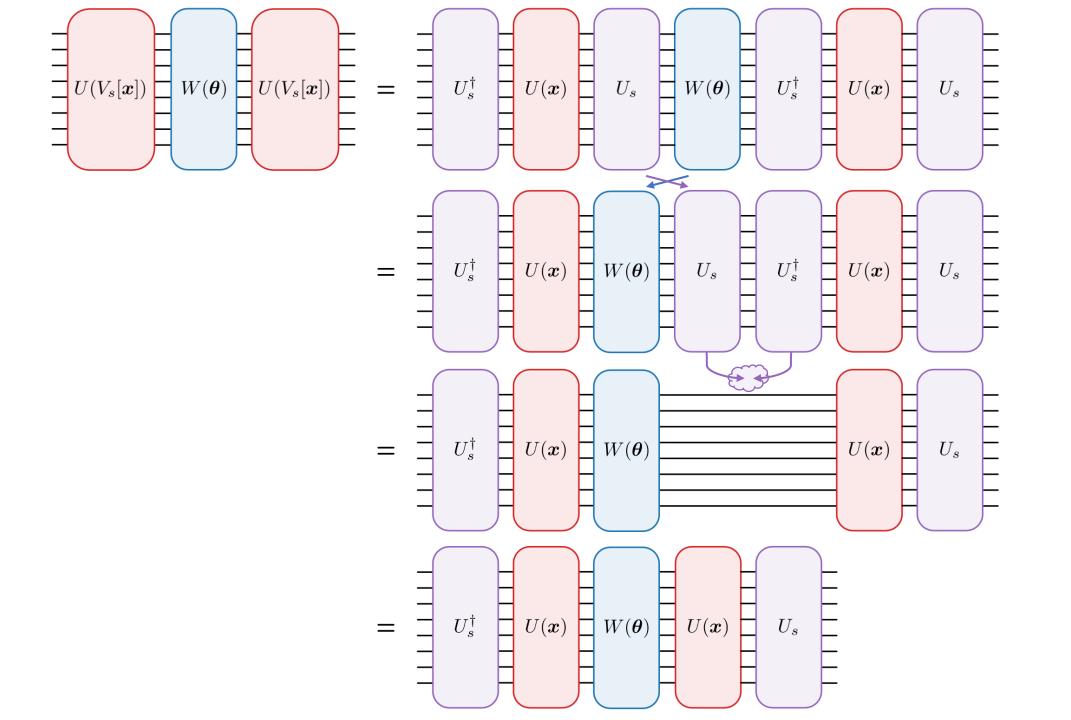
How do we achieve **label invariance** for the whole model?

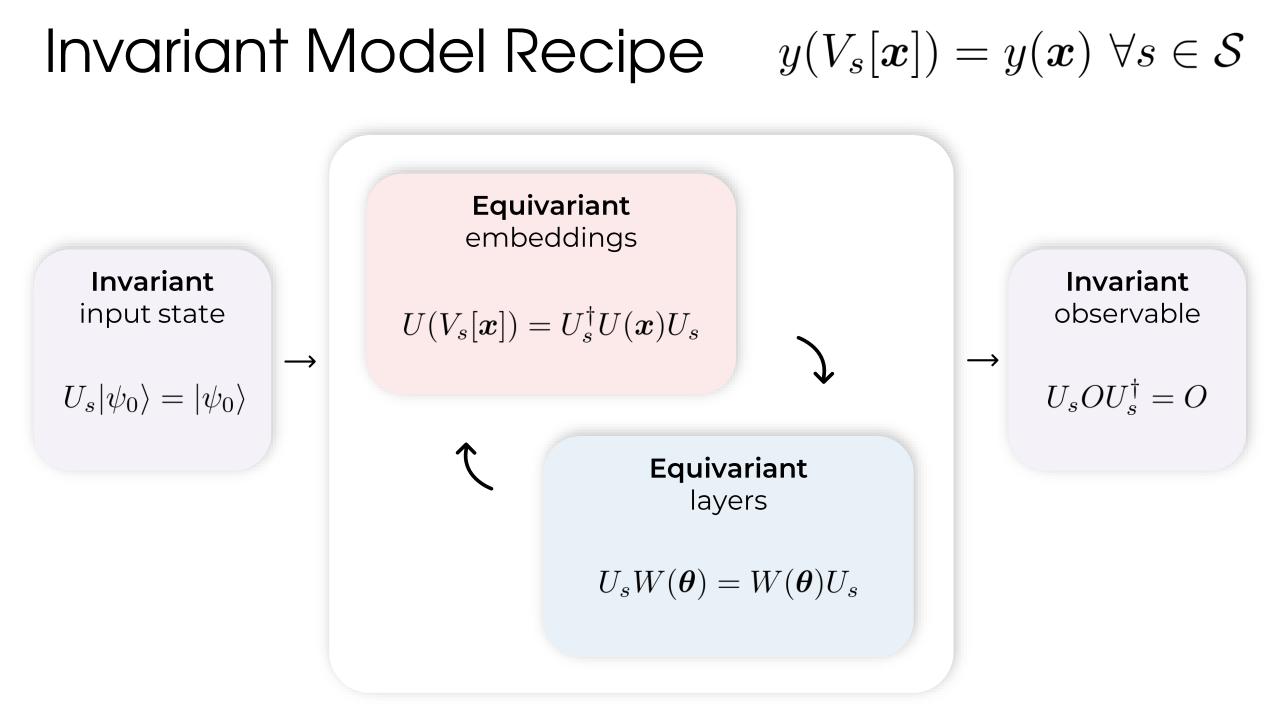


Equivariant Layers



the induced representation





Equivariant Gatesets

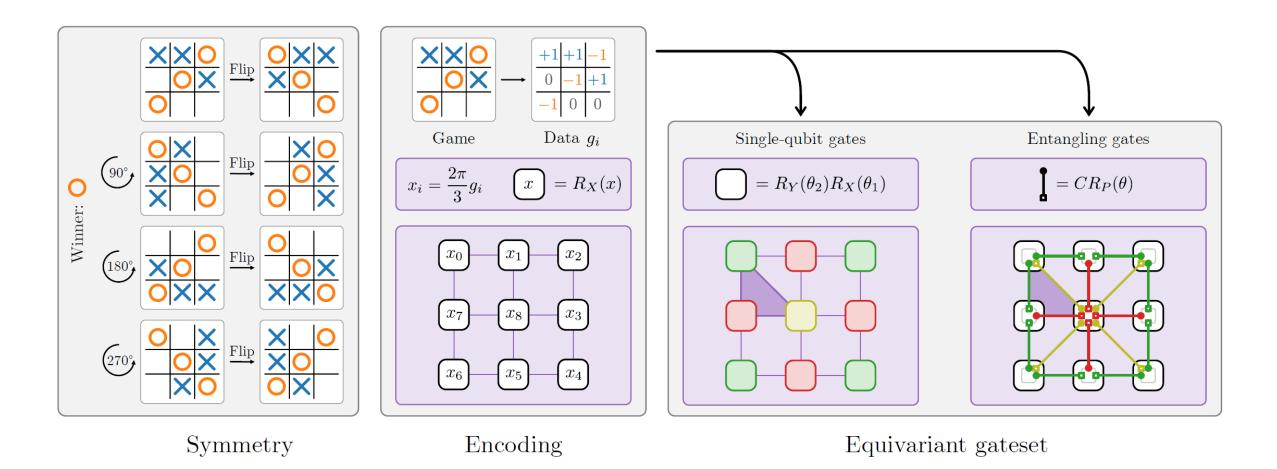
How to construct equivariant layers?

Exploit the fact that concatenations of equivariant gates are again equivariant

Motivates equivariant gatesets

Regular gateset $\mathcal{G} = \{G_1, G_2, \dots\}$ Group twirl $\mathcal{T}[G] = \frac{1}{|\mathcal{S}|} \sum_{s \in S} U_s G U_s^{\dagger}$ Equivariant gateset $\mathcal{T}[\mathcal{G}] = \{\mathcal{T}[G_1], \mathcal{T}[G_2], \dots\}$

Tic Tac Toe



Tic Tac Toe

Compare a regular reuploading model with a symmetrized one Run sweeps over different depths and randomized architectures Invariant models have similar performance in training but much better generalization performance

Invariant models generically have **better generalization**

Further Results

- Analysis of different kinds of symmetries, both continuous and discrete
- Discussion of problems that can surface during the construction
- Further numerical experiments showcasing improved generalization
- > We show that our techniques can also be applied to VQE and mitigate Barren Plateaus

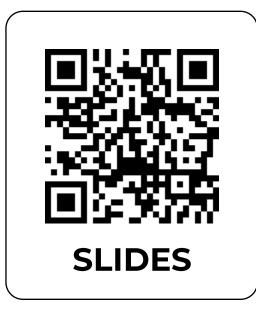
Summary

- > We need informed choices for parametrizations of variational quantum learning models
- > Label invariance under a symmetry group provides such information
- > We show if and how such information can be used to produce invariant quantum learning models
- The resulting models have less parameters and numerical experiments confirm their better generalization

Some Open Questions

- > Are variational re-uploading models a reasonable choice for data embedding and prediction?
- > What other kinds of data embeddings would be reasonable?
- > Is QML for classical data a good idea in the first place? Why would embedding into the unitary group be good for classical ML tasks?

Thank you for your attention!



a www.johannesjakobmeyer.com

