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Quantum Metrology

Physical quantities (magnetic fields, energies, .) @ metrology
need to be measured accurately /mt trolad3i

Study how quantum effects can help

noun

the scientific study of measurement.

Probe Encoding Output

State Evolution Measurement Distribution

p — &(¢) — {ILi} — pi(@P)
Quantum POVM

Channel
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Task: Compute an estimator from samples of the output distribution
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Precision from n samples is limited by Cramér-Rao bound
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rRecap #7

Sensing amounts to estimating the underlying physical parameters
from a classical probability distribution

Estimation precision is limited by the Cramér-Rao bound
Attainble precision is quantified by the classical Fisher information
The guantum Fisher information bounds the attainable Fisher information

> Classical Fisher information should be used to judge sensing quality!
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Optimal Metrology

We need to find optimal probes and measurements

Complicated under noise and device limitations

. — New
NISQ techniques come to the rescue: =N — Dararmeters
use variational approaches Cost
I I S

Prior work'? focused on probes for

single-parameter metrology and surrogates
for the Quantum Fisher Information
Qutput Circuit

Kaubruegger, Raphael, et al. Physical Review Letters 123.26 (2019): 260505.
2Koczor, Balint, et al. "Variational-State Quantum Metrology." New Journal of Physics (2020).
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Calculation of Fisher Information

Fisher Information Matrix w.r.t. the physical parameters

U&bk:=2521

[

Op; Opy

Pi

0¢; 0Pk

Exploit parameter-shift rule'? to calculate derivatives

1

@md¢%=§:m(¢+-

ISchuld, Maria, et al. Physical Review A 99.3 (2019): 03233.

T
—e
2

i) =

2Banchi, Leonardo, and Gavin E. Crooks. arXiv preprint arXiv:2005.10299 (2020).

N

¢—§€j

(s

)




Cost Function



Cost Function

We are usually interested in a function of the parameters:
Exploit transformation rule of Fisher Information Matrix



Cost Function

We are usually interested in a function of the parameters:
Exploit transformation rule of Fisher Information Matrix

f=Ff(p) = Ip=J"14J  Jjp= o



Cost Function

We are usually interested in a function of the parameters:
Exploit transformation rule of Fisher Information Matrix

F=Ffl@) = Ir=J"1p  Jjp= o

Need a scalar cost function:
Apply weighted trace to both sides of the CRB!



Cost Function

We are usually interested in a function of the parameters:
Exploit transformation rule of Fisher Information Matrix

F=Ffl@) = Ir=J"1p  Jjp= o

Need a scalar cost function:
Apply weighted trace to both sides of the CRB!

1 1
ik o)t > —T I77} = —
r{W Cov(p)} > - r{Wli, } nCW



Cost Function

We are usually interested in a function of the parameters:
Exploit transformation rule of Fisher Information Matrix

F=Ff(p) = Ip=J"14J  Jji = o
"Tr{W Cov(¢)} = MSEw (¢) A
=E{(p - o, W(p—9))}

1 1
1 p)y > —T [} = —
I{W COV(QO)} = I{W f } nCW
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Recap #2

The classical Fisher information matrix is calculated from the output
probabilities and their derivatives w.r.t. the physical parameters

The derivatives can be calculated on the device via the parameter-shift rule

The classical Fisher information matrix w.r.t. post-processed parameters
can be computed using the postprocessing’'s Jacobian

The cost function is obtained from a weighted trace of the Cramér-Rao
bound
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Implementation Prerequisites

Knowledge about the encoding process and noise sources
Example: Unitary encoding with commuting Nnoise process

E(@)lpo] = NU(9)polU" ()]

Ability to manipulate or spoof the physical parameters
Example: Unitary encoding with phase injection
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Task: Estimate the average of three phases under dephasing noise
Fixed phase parameters and varied noise level
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Numerics: NV Trilateration

Task: Estimate the position of a spin interacting with three sensing spins
Compare local and shallow state preparations for different gate error levels

1L
~ 10
4 ) §
| Pl(91:92393) — é (1 2 3)
— Pi(04,05,06) F—
P( ) O 100 L 2 70 72
— P (0,05, 04) — ch ( sJ, )
\- J ) (4,1,1)
g (0,0,0)
%J_Di—_. ® Local
O ®  Shallow
(_ P2 (0r02.03) — A i | | | | |
T ’9 ’6‘) P(6010) 0.00 0.02 0.04 0.06 0.08 0.10
] Pl (;, 95’ ;) PaOu) | Gate Depolarization Probability




—urther Contents



—urther Contents

We provide multiple extensions of the algorithm, for example including
prior knowlege (Bayesian approach)



—urther Contents

We provide multiple extensions of the algorithm, for example including
prior knowlege (Bayesian approach)

We provide a parameter-shift rule for noise channels



—urther Contents

We provide multiple extensions of the algorithm, for example including
prior knowlege (Bayesian approach)

We provide a parameter-shift rule for noise channels

We give details on the implementation of parameter-shift rules
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Variational methods can be used
to Improve guantum sensors



Thank you for your attention!
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