#### WRACHTRUP GROUP SEMINAR

# Improving Quantum Sensing with Variational Methods

JOHANNES JAKOB MEYER, FU BERLIN

arxiv:2006.06303

### arxiv:2006.06303

#### A variational toolbox for quantum multi-parameter estimation

Johannes Jakob Meyer, 1 Johannes Borregaard, 2,3 and Jens Eisert 1

<sup>1</sup>Dahlem Center for Complex Quantum Systems, Freie Universität Berlin, 14195 Berlin, Germany <sup>2</sup>Qutech and Kavli Institute of Nanoscience, Delft University of Technology, 2628 CJ Delft, The Netherlands <sup>3</sup>Mathematical Sciences, Universitetsparken 5, 2100 København Ø, Matematik E, Denmark (Dated: June 11, 2020)



Johannes Borregaard TU Delft



Jens Eisert FU Berlin

## arxiv:2006.06303

#### A variational toolbox for quantum multi-parameter estimation

Johannes Jakob Meyer, 1 Johannes Borregaard, 2,3 and Jens Eisert 1

<sup>1</sup>Dahlem Center for Complex Quantum Systems, Freie Universität Berlin, 14195 Berlin, Germany <sup>2</sup>Qutech and Kavli Institute of Nanoscience, Delft University of Technology, 2628 CJ Delft, The Netherlands <sup>3</sup>Mathematical Sciences, Universitetsparken 5, 2100 København Ø, Matematik E, Denmark (Dated: June 11, 2020)



Johannes Borregaard TU Delft



Jens Eisert FU Berlin



Physical quantities (magnetic fields, energies, ...) need to be **measured** accurately

Physical quantities (magnetic fields, energies, ...) need to be **measured** accurately



noun

Physical quantities (magnetic fields, energies, ...) need to be **measured** accurately
Study how **quantum effects** can help



noun

Physical quantities (magnetic fields, energies, ...) need to be **measured** accurately
Study how **quantum effects** can help



noun



Physical quantities (magnetic fields, energies, ...) need to be **measured** accurately

Study how quantum effects can help



noun

the scientific study of measurement.

Probe State



Physical quantities (magnetic fields, energies, ...) need to be **measured** accurately

Study how quantum effects can help





Physical quantities (magnetic fields, energies, ...) need to be **measured** accurately

Study how quantum effects can help





Physical quantities (magnetic fields, energies, ...) need to be **measured** accurately

Study how quantum effects can help





Physical quantities (magnetic fields, energies, ...) need to be **measured** accurately

Study how quantum effects can help



noun

Probe State Encoding Evolution Measurement 
$$\rho \longrightarrow \mathcal{E}(\phi) \longrightarrow \{\Pi_l\}$$
 Quantum Channel

Physical quantities (magnetic fields, energies, ...) need to be **measured** accurately

Study how quantum effects can help





Task: Compute an **estimator** from samples of the output distribution

$$p_l(\boldsymbol{\phi}) \rightarrow \hat{\boldsymbol{\varphi}} \colon \mathbb{E}\{\hat{\boldsymbol{\varphi}}\} = \boldsymbol{\phi}$$

Task: Compute an **estimator** from samples of the output distribution

$$p_l(\boldsymbol{\phi}) \rightarrow \hat{\boldsymbol{\varphi}} : \mathbb{E}\{\hat{\boldsymbol{\varphi}}\} = \boldsymbol{\phi}$$

Precision from n samples is limited by Cramér-Rao bound

$$\operatorname{Cov}(\hat{\boldsymbol{\varphi}}) \ge \frac{1}{n} I_{\boldsymbol{\phi}}^{-1}(\operatorname{POVM})$$

Task: Compute an **estimator** from samples of the output distribution

$$p_l(\boldsymbol{\phi}) \rightarrow \hat{\boldsymbol{\varphi}} : \mathbb{E}\{\hat{\boldsymbol{\varphi}}\} = \boldsymbol{\phi}$$

Pr
$$\left[ \operatorname{Tr} \{ \operatorname{Cov}(\hat{oldsymbol{arphi}}) \} = \operatorname{MSE}(\hat{oldsymbol{arphi}}) 
ight]$$
Cramér-Rao bound

$$\operatorname{Cov}(\hat{\boldsymbol{\varphi}}) \ge \frac{1}{n} I_{\boldsymbol{\phi}}^{-1}(\operatorname{POVM})$$

Task: Compute an **estimator** from samples of the output distribution

$$p_l(\boldsymbol{\phi}) \rightarrow \hat{\boldsymbol{\varphi}} : \mathbb{E}\{\hat{\boldsymbol{\varphi}}\} = \boldsymbol{\phi}$$

Precision from n samples is limited by Cramér-Rao bound

$$\operatorname{Cov}(\hat{\boldsymbol{\varphi}}) \ge \frac{1}{n} I_{\boldsymbol{\phi}}^{-1}(\operatorname{POVM}) \ge \frac{1}{n} \mathcal{F}_{\boldsymbol{\phi}}^{-1}$$

Sensing amounts to estimating the underlying physical parameters from a classical probability distribution

Sensing amounts to estimating the underlying physical parameters from a classical probability distribution

Estimation precision is limited by the Cramér-Rao bound

Sensing amounts to estimating the underlying physical parameters from a classical probability distribution

Estimation precision is limited by the Cramér-Rao bound

Attainble precision is quantified by the classical Fisher information

Sensing amounts to estimating the underlying physical parameters from a classical probability distribution

Estimation precision is limited by the Cramér-Rao bound

Attainble precision is quantified by the classical Fisher information

The quantum Fisher information bounds the attainable Fisher information

Sensing amounts to estimating the underlying physical parameters from a classical probability distribution

Estimation precision is limited by the Cramér-Rao bound

Attainble precision is quantified by the classical Fisher information

The quantum Fisher information bounds the attainable Fisher information

→ Classical Fisher information should be used to judge sensing quality!

We need to find optimal probes and measurements

We need to find optimal probes and measurements

Complicated under noise and device limitations

We need to find optimal probes and measurements

Complicated under noise and device limitations

We need to find optimal probes and measurements

Complicated under noise and device limitations



We need to find optimal probes and measurements

Complicated under noise and device limitations



We need to find optimal probes and measurements

Complicated under noise and device limitations



We need to find optimal probes and measurements

Complicated under noise and device limitations



We need to find optimal probes and measurements

Complicated under noise and device limitations



We need to find optimal probes and measurements

Complicated under noise and device limitations



# Optimal Metrology

We need to find optimal probes and measurements

Complicated under noise and device limitations

NISQ techniques come to the rescue: use variational approaches

Prior work<sup>1,2</sup> focused on probes for single-parameter metrology and surrogates for the Quantum Fisher Information









Fisher Information Matrix w.r.t. the physical parameters

$$[I_{\phi}]_{jk} = \sum_{l} \frac{1}{p_{l}} \frac{\partial p_{l}}{\partial \phi_{j}} \frac{\partial p_{l}}{\partial \phi_{k}}$$

Fisher Information Matrix w.r.t. the physical parameters

$$[I_{\phi}]_{jk} = \sum_{l} \frac{1}{p_{l}} \frac{\partial p_{l}}{\partial \phi_{j}} \frac{\partial p_{l}}{\partial \phi_{k}}$$

Exploit parameter-shift rule<sup>1,2</sup> to calculate derivatives

$$\partial_j p_l(\boldsymbol{\phi}) = \frac{1}{2} \left[ p_l \left( \boldsymbol{\phi} + \frac{\pi}{2} \boldsymbol{e}_j \right) - p_l \left( \boldsymbol{\phi} - \frac{\pi}{2} \boldsymbol{e}_j \right) \right]$$

Fisher Information Matrix w.r.t. the physical parameters

$$[I_{\phi}]_{jk} = \sum_{l} \frac{1}{p_{l}} \frac{\partial p_{l}}{\partial \phi_{j}} \frac{\partial p_{l}}{\partial \phi_{k}} \left[ -\frac{1}{p_{l}} \frac{\partial p_{l}}{\partial \phi_{k}} \right]$$



Exploit parameter-shift rule<sup>1,2</sup> to calculate derivatives

$$\partial_j p_l(\boldsymbol{\phi}) = \frac{1}{2} \left[ p_l \left( \boldsymbol{\phi} + \frac{\pi}{2} \boldsymbol{e}_j \right) - p_l \left( \boldsymbol{\phi} - \frac{\pi}{2} \boldsymbol{e}_j \right) \right]$$

We are usually interested in a function of the parameters: Exploit transformation rule of Fisher Information Matrix

We are usually interested in a function of the parameters: Exploit transformation rule of Fisher Information Matrix

$$\boldsymbol{f} = \boldsymbol{f}(\boldsymbol{\phi}) \rightarrow I_{\boldsymbol{f}} = J^T I_{\boldsymbol{\phi}} J \qquad J_{jk} = \frac{\partial f_j}{\partial \phi_k}$$

We are usually interested in a function of the parameters: Exploit transformation rule of Fisher Information Matrix

$$\boldsymbol{f} = \boldsymbol{f}(\boldsymbol{\phi}) \rightarrow I_{\boldsymbol{f}} = J^T I_{\boldsymbol{\phi}} J \qquad J_{jk} = \frac{\partial J_j}{\partial \phi_k}$$

Need a scalar cost function: Apply weighted trace to both sides of the CRB!

We are usually interested in a function of the parameters: Exploit transformation rule of Fisher Information Matrix

$$\boldsymbol{f} = \boldsymbol{f}(\boldsymbol{\phi}) \rightarrow I_{\boldsymbol{f}} = J^T I_{\boldsymbol{\phi}} J \qquad J_{jk} = \frac{\partial J_j}{\partial \phi_k}$$

Need a scalar cost function: Apply weighted trace to both sides of the CRB!

$$\operatorname{Tr}\{W\operatorname{Cov}(\hat{\boldsymbol{\varphi}})\} \ge \frac{1}{n}\operatorname{Tr}\{WI_{\boldsymbol{f}}^{-1}\} = \frac{1}{n}C_W$$

We are usually interested in a function of the parameters: Exploit transformation rule of Fisher Information Matrix

$$\begin{aligned}
\mathbf{f} &= \mathbf{f}(\boldsymbol{\phi}) \to I_{\mathbf{f}} = J^{T} I_{\boldsymbol{\phi}} J & J_{jk} &= \frac{\partial J_{j}}{\partial \phi_{k}} \\
\text{Tr}\{W \operatorname{Cov}(\hat{\boldsymbol{\varphi}})\} &= \operatorname{MSE}_{W}(\hat{\boldsymbol{\varphi}}) \\
&= \mathbb{E}\{\langle \hat{\boldsymbol{\varphi}} - \boldsymbol{\phi}, W(\hat{\boldsymbol{\varphi}} - \boldsymbol{\phi}) \rangle\}
\end{aligned}$$

$$\operatorname{Tr}\{W\operatorname{Cov}(\hat{\boldsymbol{\varphi}})\} \ge \frac{1}{n}\operatorname{Tr}\{WI_{\boldsymbol{f}}^{-1}\} = \frac{1}{n}C_W$$

The classical Fisher information matrix is calculated from the output probabilities and their derivatives w.r.t. the physical parameters

The classical Fisher information matrix is calculated from the output probabilities and their derivatives w.r.t. the physical parameters

The derivatives can be calculated on the device via the parameter-shift rule

The classical Fisher information matrix is calculated from the output probabilities and their derivatives w.r.t. the physical parameters

The derivatives can be calculated on the device via the parameter-shift rule

The classical Fisher information matrix w.r.t. post-processed parameters can be computed using the postprocessing's Jacobian

The classical Fisher information matrix is calculated from the output probabilities and their derivatives w.r.t. the physical parameters

The derivatives can be calculated on the device via the parameter-shift rule

The classical Fisher information matrix w.r.t. post-processed parameters can be computed using the postprocessing's Jacobian

The cost function is obtained from a weighted trace of the Cramér-Rao bound

Knowledge about the encoding process and noise sources

Knowledge about the encoding process and noise sources *Example:* Unitary encoding with commuting noise process

$$\mathcal{E}(\boldsymbol{\phi})[\rho_0] = \mathcal{N}[U(\boldsymbol{\phi})\rho_0 U^{\dagger}(\boldsymbol{\phi})]$$

Knowledge about the encoding process and noise sources *Example:* Unitary encoding with commuting noise process

$$\mathcal{E}(\boldsymbol{\phi})[\rho_0] = \mathcal{N}[U(\boldsymbol{\phi})\rho_0 U^{\dagger}(\boldsymbol{\phi})]$$

Ability to manipulate or spoof the physical parameters

Knowledge about the encoding process and noise sources *Example*: Unitary encoding with commuting noise process

$$\mathcal{E}(\boldsymbol{\phi})[\rho_0] = \mathcal{N}[U(\boldsymbol{\phi})\rho_0 U^{\dagger}(\boldsymbol{\phi})]$$

Ability to manipulate or spoof the physical parameters Example: Unitary encoding with phase injection



Task: Estimate the average of three phases under dephasing noise

Task: Estimate the average of three phases under dephasing noise Fixed phase parameters and varied noise level

Task: Estimate the average of three phases under dephasing noise Fixed phase parameters and varied noise level



Task: Estimate the position of a spin interacting with three sensing spins







#### **Further Contents**

#### **Further Contents**

We provide multiple extensions of the algorithm, for example including prior knowlege (Bayesian approach)

#### **Further Contents**

We provide multiple extensions of the algorithm, for example including prior knowlege (Bayesian approach)

We provide a parameter-shift rule for noise channels

#### **Further Contents**

We provide multiple extensions of the algorithm, for example including prior knowlege (Bayesian approach)

We provide a parameter-shift rule for noise channels

We give details on the implementation of parameter-shift rules







Kaubrügger et al.

COST FUNCTION

Spin Squeezing

STATE PREPARATION

Fixed Circuit

MEASUREMENT

Fixed

Single Parameter Multiparameter

Kaubrügger et al.

COST FUNCTION

Spin Squeezing

STATE PREPARATION

Fixed Circuit

MEASUREMENT

Fixed

Koczor et al.

COST FUNCTION

Fidelity

STATE PREPARATION

Parametrized Circuit

MEASUREMENT

Single Parameter Multiparameter

Kaubrügger et al.

COST FUNCTION

Spin Squeezing

STATE PREPARATION

Fixed Circuit

MEASUREMENT

Fixed

Ours

COST FUNCTION

Classical Fisher Info

STATE PREPARATION

Parametrized Circuit

MEASUREMENT

Parametrized Circuit

Koczor et al.

COST FUNCTION

Fidelity

STATE PREPARATION

Parametrized Circuit

MEASUREMENT

Single Parameter Multiparameter

Kaubrügger et al.

COST FUNCTION

Spin Squeezing

STATE PREPARATION

Fixed Circuit

MEASUREMENT

Fixed

Ours

COST FUNCTION

Classical Fisher Info

STATE PREPARATION

Parametrized Circuit

MEASUREMENT

Parametrized Circuit

Koczor et al.

COST FUNCTION

Fidelity

STATE PREPARATION

Parametrized Circuit

MEASUREMENT

N/A

Yang et al.

COST FUNCTION

Purity Loss

STATE PREPARATION

Control Sequence

MEASUREMENT

Single Parameter Multiparameter

Kaubrügger et al.

COST FUNCTION

Spin Squeezing

STATE PREPARATION

Fixed Circuit

MEASUREMENT

Fixed

Ours

COST FUNCTION

Classical Fisher Info

STATE PREPARATION

Parametrized Circuit

MEASUREMENT

Parametrized Circuit

Ma et al.

COST FUNCTION

Classical Fisher Info

STATE PREPARATION

Optimized Circuit

MEASUREMENT

Optimized Circuit

Koczor et al.

COST FUNCTION

Fidelity

STATE PREPARATION

Parametrized Circuit

MEASUREMENT

N/A

Yang et al.

COST FUNCTION

Purity Loss

STATE PREPARATION

Control Sequence

MEASUREMENT

Single Parameter Multiparameter

Kaubrügger et al.

COST FUNCTION

Spin Squeezing

STATE PREPARATION

Fixed Circuit

MEASUREMENT

Fixed

Ours

COST FUNCTION

Classical Fisher Info

STATE PREPARATION

Parametrized Circuit

MEASUREMENT

Parametrized Circuit

Ma et al.

COST FUNCTION

Classical Fisher Info

STATE PREPARATION

Optimized Circuit

MEASUREMENT

Optimized Circuit

Koczor et al.

COST FUNCTION

Fidelity

STATE PREPARATION

Parametrized Circuit

MEASUREMENT

N/A

Yang et al.

COST FUNCTION

Purity Loss

STATE PREPARATION

Control Sequence

MEASUREMENT

N/A

Beckey et al.

COST FUNCTION

Quantum Fisher Bounds

STATE PREPARATION

Arbitrary Circuit

MEASUREMENT

Take-Home Message

Variational methods can be used to improve quantum sensors

# Thank you for your attention!



Paper



Demo



Slides