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Quantum Metrology

Physical quantities (magnetic fields, energies, ...) ¥ metrology
need to be measured accurately mr troled3i/

Study how quantum effects can help

noun

the scientific study of measurement.

Probe Encoding Output
State Evolution Measurement Distribution

p — E(p) — M — pi(P)



Gathering Intuition



Gathering Intuition

o107



Gathering Intuition

fF) | — o<



Gathering Intuition

+) |— e < |—NF)/|-)



Gathering Intuition
+) |—Fe**Z |—NF)/|-)

THEORY



Gathering Intuition
+) | —e % |—NF)/|-)

THEORY

b= 0.9



Gathering Intuition
+) |—Fe**Z |—NF)/|-)

THEORY

b= 0.9




Gathering Intuition
+) |—Fe**Z |—NF)/|-)

THEORY

b= 0.9

b= 0.5



Gathering Intuition
+) |—Fe**Z |—NF)/|-)

THEORY

b= 0.9

|




Gathering Intuition
+) |—Fe**Z |—NF)/|-)

THEORY EXPERIMENT

b= 0.9

|




Gathering Intuition
+) |—Fe**Z |—NF)/|-)

THEORY EXPERIMENT

b= 0.9

|




Gathering Intuition

+) |—PFe @< |— )

THEORY EXPERIMENT
it
b= 0.9
N
+) -) ot
+) -)
o = 0.5




Gathering Intuition

+) |—PFe @< |— )

THEORY EXPERIMENT
b= 0.9 :
N
+) -) ot
+) -)
b =0.5 |
+) —) ¢ — 11 1 01



Measuring Performance



Measuring Performance

Task: Compute an estimator from the output distribution

pi(@) — ¢:E{p} =09




Measuring Performance

Task: Compute an estimator from the output distribution

pi(@) — ¢:E{p} =09

Precision from n samples is limited by Cramér-Rao bound

Cov(p) > —1,"(M)

1
n



Measuring Performance

Task: Compute an estimator from the output distribution

pi(@) — ¢:E{p} =09

Precision from n samples is limited by Cramér-Rao bound

Cov(@) > — I3} (M)

T
Tr{Cov(¢)} = MSE(¢) |




Measuring Performance

Task: Compute an estimator from the output distribution

pi(@) — ¢:E{p} =09

Precision from n samples is limited by Cramér-Rao bound

1 1
%

Cov(p) > =1, (M) > —
n

1
n



Measuring Performance

4 A

arXiv:2103.15191

Fisher Information in Noisy Intermediate-Scale Quantum
Applications

Johannes Jakob Meyer!+?

IDahlem Center for Complex Quantum Systems, Freie Universitat Berlin, 14195 Berlin, Germany
2QMATH, Department of Mathematical Sciences, Kgbenhavns Universitet, 2100 Kgbenhavn @, Denmark

28-03-2021

N .
Cov(@) =~/ (M) > = F



https://arxiv.org/abs/2103.15191

rRecap




rRecap #7

Sensing amounts to estimating the underlying physical parameters
from a classical probability distribution



rRecap #7

Sensing amounts to estimating the underlying physical parameters
from a classical probability distribution

Estimation precision is limited by the Cramér-Rao bound



rRecap #7

Sensing amounts to estimating the underlying physical parameters
from a classical probability distribution

Estimation precision is limited by the Cramér-Rao bound

Attainble precision is quantified by the classical Fisher information



rRecap #7

Sensing amounts to estimating the underlying physical parameters
from a classical probability distribution

Estimation precision is limited by the Cramér-Rao bound
Attainble precision is quantified by the classical Fisher information

The quantum Fisher information bounds the attainable Fisher information



rRecap #7

Sensing amounts to estimating the underlying physical parameters
from a classical probability distribution

Estimation precision is limited by the Cramér-Rao bound
Attainble precision is quantified by the classical Fisher information
The quantum Fisher information bounds the attainable Fisher information

> Classical Fisher information should be used to judge sensing quality!
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Optimal Metrology

We need to find optimal probes and measurements

Complicated under noise and device limitations

: " New
NISQ technigues come to the rescue: & — Parameters
use variational approaches Cost
L ﬁ.

Prior work!2 focused on single-parameter
metrology and surrogates for the @

Quantum Fisher Information

Qutput .
P Circult

Kaubrugger, Raphael, et al. Physical Review Letters 123.26 (2019): 260505.
2Koczor, Balint, et al. "Variational-State Quantum Metrology." New Journal of Physics (2020).
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Cost Function

INnclude post-processing by considering a function of the parameters:
Exploit transformation rule of Fisher Information Matrix

F=Ff(@p) —» Ip=J I4J

Need a scalar cost function:
Apply weighted trace to both sides of the CRB!

. 1 1
Tr{W Cov(f)} > - Te{Wli, } = ECW
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Calculation of Fisher Information

Fisher Information Matrix w.r.t. the physical parameters

1 Op; Opr
Tylin =
Lol ; p1 09 Oy,

Exploit parameter-shift rulel? to calculate derivatives

0ipi(P) = % :pl (¢+ geﬂ') e (¢_ gej)

ISchuld, Maria, et al. Physical Review A 99.3 (2019): 03233].
’Banchi, Leonardo, and Gavin E. Crooks. arXiv preprint arXiv:2005.10299 (2020).
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Recap #2

The classical Fisher information matrix is calculated from the output
probabilities and their derivatives w.r.t. the physical parameters

The derivatives can be calculated on the device via the parameter-shift rule

The classical Fisher information matrix w.r.t. post-processed parameters
can be computed using the post-processing’s Jacobian

The cost function is obtained from a weighted trace of the Crameér-Rao
bound
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Have a Look at the Paper for

Multiple extensions of the algorithm, for example including prior knowlege
(Bayesian approach)

A parameter-shift rule for noise channels
Details on the implementation of parameter-shift rules in experiments

Numerical experiments that showcase the performance of the approach
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Variational methods on near-term
gquantum computers can be used
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Disclaimer: After uploading to the arxiv we were notified of
work by Vidal and Theis! that has significant overlap with ours.

IGil Vidal, Francisco Javier, and Dirk Oliver Theis. "Input Redundancy for Parameterized
\Qua ntum Circuits." Frontiers in Physics 8 (2020): 297.
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Key Motivation

Using guantum models for learning tasks is one of the key fields where
NISQ devices are hoped to bring forth a guantum advantage

A lot of work has been done to understand the practical side, but very little
IS kKnown on the theory side

So we asked ourselves: What functions can such models learn?
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Output State of the Quantum Model

The eigenvalues of the generator determine the frequencies
H|\) = A|\)
S(z)|\) = e N)

and the frequencies accumulate between layers: /The output state

B contains all possible
P) = Z)\ Yald) _sums of frequencies |

)
S(@)l) =) re ")
WS(@)lb) =) ., Waaibre |\
S()WS(z)|y) = Waathre PO N

AT
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Output of the Quantum Model

Output is expectation value and therefore contains a complex conjugation

fare(@) = (Vo(z)[ Mg (x)) = )  cu(M,0)e™"

wel)
For L layers of encoding

Q:{)\Jl _|__|_)\JL _)\kl __)\ICL |Ajl7)\]€l EspeC(H)}

The accessible spectrum consists of
all sums of differences of eigenvalues
\o:the generator of the data encoding )




ake-Home Message #2

Quantum learning models output
Fourlier series, repeating data encoding
glves access to higher frequencies
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auli-Encodings

Pauli rotations are the most popular encoding strategy, e.q.
S(z) = Ry(x) = e *%/?

Pauli rotations give an integer spectrum
The number of available frequencies grows linearly in depth and width

But for general encodings the dependence can be exponential:

J2L d System dimension

A
p—t

frequencies
#( d )_ 2 L Number of layers
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Universality of Quantum Models

A model with one layer of data encodings generated by a universal
Hamiltonian family and arbitrary unitaries is a universal function
approximator

_________________

w 5(z) W (2)
0) B 2
0) | BT ~
0) A H = 5 ~
* N ¥ _______ ] *

A universal Hamiltonian family asymptotically has access to all integer
frequencies. Repeated single-qubit Pauli rotation encodings are a universal
Hamiltonian family!



ake-Home Message #5

Quantum learning models are
universal function approximators
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Practical Implications for Model Building

Know your data encoding, it fundamentally limits what you can learn!
Powerful guantum computers can make stupid models

Rescale your data wisely

Classical pre-processing can alter the model’'s output dramatically
Make your observables trainable

NN
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Open Questions

1. Can we use this approach to calculate meaningful generalisation
Mmeasures?

2. Can we link specific ansatz classes for the trainable blocks to the output
Fourier coefficients?

s universal approximation possible with fixed qubit numbers?
4. Are guantum models good for signal processing?

N
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