Q-TURN 2020 Improving Quantum Sensing with Quantum Computers

JOHANNES JAKOB MEYER, FU BERLIN

🎔 @jj_xyz

arxiv:2006.06303

A variational toolbox for quantum multi-parameter estimation

Johannes Jakob Meyer,¹ Johannes Borregaard,^{2,3} and Jens Eisert¹

¹Dahlem Center for Complex Quantum Systems, Freie Universität Berlin, 14195 Berlin, Germany ²Qutech and Kavli Institute of Nanoscience, Delft University of Technology, 2628 CJ Delft, The Netherlands ³Mathematical Sciences, Universitetsparken 5, 2100 København Ø, Matematik E, Denmark (Dated: June 11, 2020)

Johannes Borregaard TU Delft

Jens Eisert FU Berlin

Physical quantities (magnetic fields, energies, ...) need to be **measured** accurately

Physical quantities (magnetic fields, energies, ...) need to be **measured** accurately

Physical quantities (magnetic fields, energies, ...) need to be **measured** accurately

	metrology /mɪˈtrɒlədʒi/	
noun		
the	scientific study of measurement.	

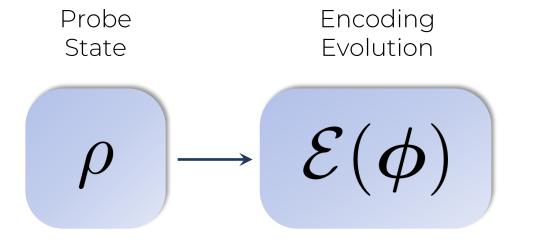
Physical quantities (magnetic fields, energies, ...) need to be **measured** accurately

	metrology /mɪˈtrɒlədʒi/	
noun		
the	scientific study of measurement.	

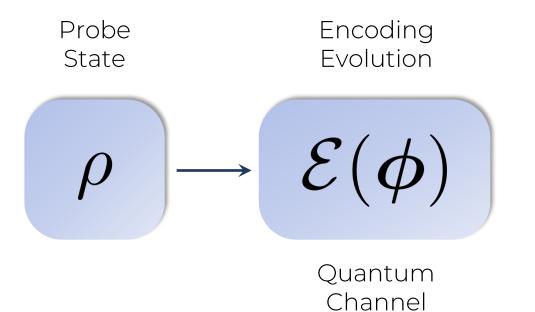
Physical quantities (magnetic fields, energies, ...) need to be **measured** accurately

	metrology /mɪˈtrɒlədʒi/
noun	
the	scientific study of measurement.

Physical quantities (magnetic fields, energies, ...) need to be **measured** accurately

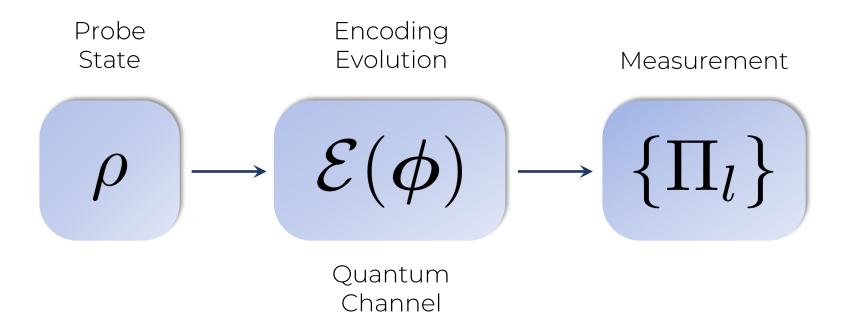


Physical quantities (magnetic fields, energies, ...) need to be **measured** accurately

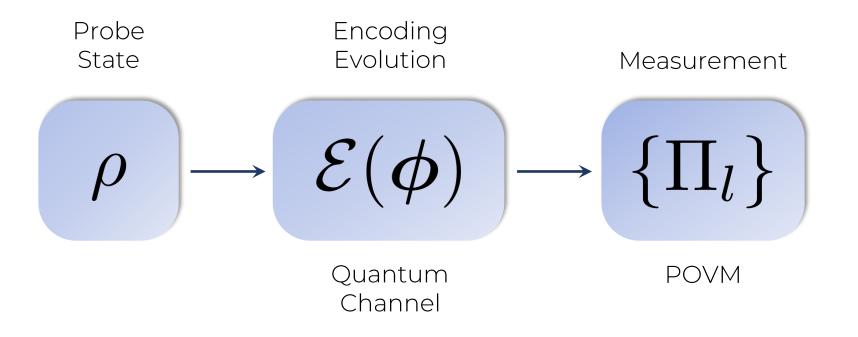


Physical quantities (magnetic fields, energies, ...) need to be **measured** accurately

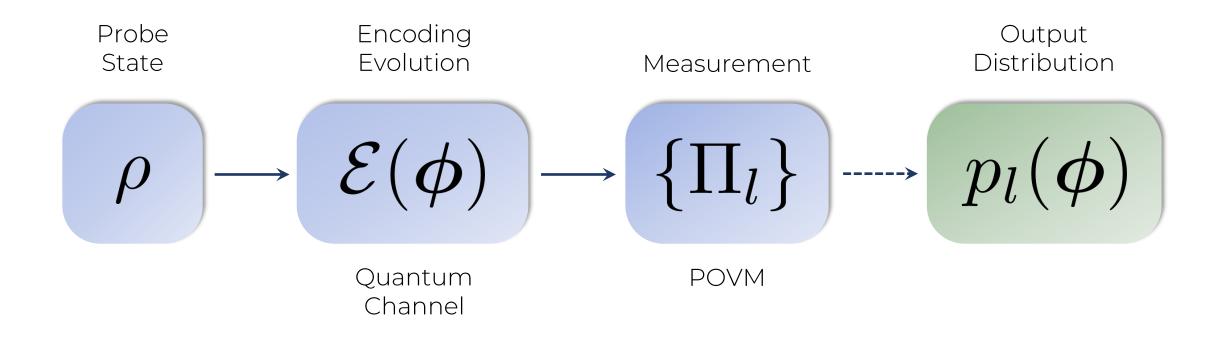
	metrology /mɪˈtrɒlədʒi/	
noun		
the	scientific study of measurement.	



Physical quantities (magnetic fields, energies, ...) need to be **measured** accurately



Physical quantities (magnetic fields, energies, ...) need to be **measured** accurately Study how **quantum effects** can help



Task: Compute an **estimator** from the output distribution

$$p_l(\boldsymbol{\phi}) \rightarrow \hat{\boldsymbol{\varphi}} \colon \mathbb{E}\{\hat{\boldsymbol{\varphi}}\} = \boldsymbol{\phi}$$

Task: Compute an **estimator** from the output distribution

$$p_l(\boldsymbol{\phi}) \rightarrow \hat{\boldsymbol{\varphi}} \colon \mathbb{E}\{\hat{\boldsymbol{\varphi}}\} = \boldsymbol{\phi}$$

Precision from n samples is limited by Cramér-Rao bound

$$\operatorname{Cov}(\hat{\boldsymbol{\varphi}}) \ge \frac{1}{n} I_{\boldsymbol{\phi}}^{-1}(\operatorname{POVM})$$

Task: Compute an **estimator** from the output distribution

$$p_l(\boldsymbol{\phi}) \rightarrow \hat{\boldsymbol{\varphi}} \colon \mathbb{E}\{\hat{\boldsymbol{\varphi}}\} = \boldsymbol{\phi}$$

Precision from n samples is limited by Cramér-Rao bound

$$\operatorname{Cov}(\hat{\varphi}) \ge \frac{1}{n} I_{\phi}^{-1}(\operatorname{POVM})$$
$$[\operatorname{Cov}(\hat{\varphi})] = \operatorname{MSE}(\hat{\varphi})$$

Task: Compute an **estimator** from the output distribution

$$p_l(\boldsymbol{\phi}) \rightarrow \hat{\boldsymbol{\varphi}} \colon \mathbb{E}\{\hat{\boldsymbol{\varphi}}\} = \boldsymbol{\phi}$$

Precision from n samples is limited by Cramér-Rao bound

$$\operatorname{Cov}(\hat{\boldsymbol{\varphi}}) \ge \frac{1}{n} I_{\boldsymbol{\phi}}^{-1}(\operatorname{POVM}) \ge \frac{1}{n} \mathcal{F}_{\boldsymbol{\phi}}^{-1}$$

Sensing amounts to estimating the underlying physical parameters from a classical probability distribution

Sensing amounts to estimating the underlying physical parameters from a classical probability distribution

Estimation precision is limited by the Cramér-Rao bound

Sensing amounts to estimating the underlying physical parameters from a classical probability distribution

Estimation precision is limited by the Cramér-Rao bound

Attainble precision is quantified by the classical Fisher information

Sensing amounts to estimating the underlying physical parameters from a classical probability distribution

Estimation precision is limited by the Cramér-Rao bound

Attainble precision is quantified by the classical Fisher information

The quantum Fisher information bounds the attainable Fisher information

Sensing amounts to estimating the underlying physical parameters from a classical probability distribution

Estimation precision is limited by the Cramér-Rao bound

Attainble precision is quantified by the classical Fisher information

The quantum Fisher information bounds the attainable Fisher information

→ Classical Fisher information should be used to judge sensing quality!

We need to find optimal probes and measurements

We need to find optimal probes and measurements

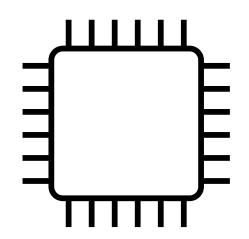
Complicated under noise and device limitations

We need to find optimal probes and measurements

Complicated under noise and device limitations

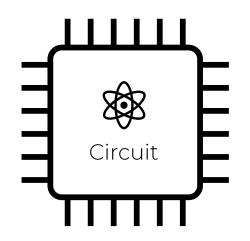
We need to find optimal probes and measurements

Complicated under noise and device limitations



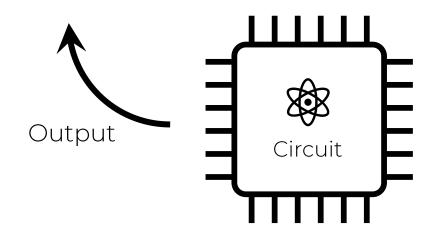
We need to find optimal probes and measurements

Complicated under noise and device limitations



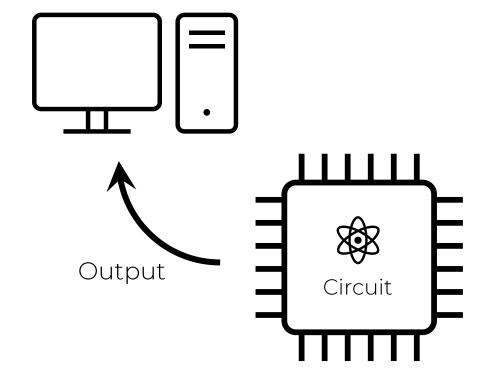
We need to find optimal probes and measurements

Complicated under noise and device limitations



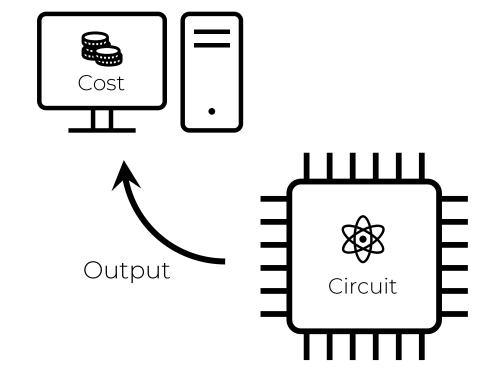
We need to find optimal probes and measurements

Complicated under noise and device limitations



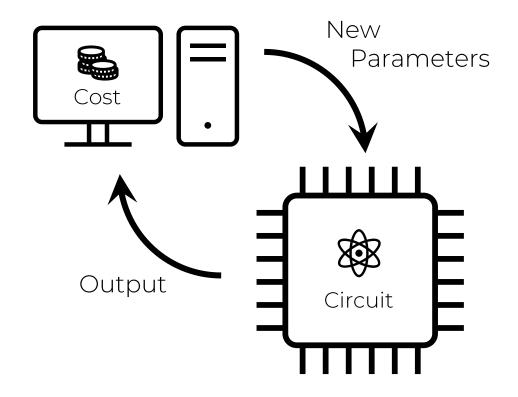
We need to find optimal probes and measurements

Complicated under noise and device limitations



We need to find optimal probes and measurements

Complicated under noise and device limitations

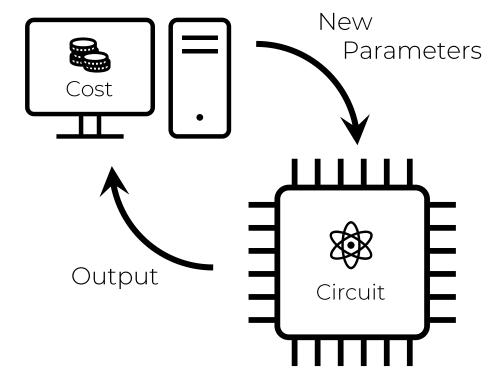


We need to find optimal probes and measurements

Complicated under noise and device limitations

NISQ techniques come to the rescue: use variational approaches

Prior work^{1,2} focused on single-parameter metrology and surrogates for the Quantum Fisher Information



¹Kaubrügger, Raphael, et al. *Physical Review Letters* 123.26 (2019): 260505.
²Koczor, Bálint, et al. "Variational-State Quantum Metrology." *New Journal of Physics* (2020).

Cost Function

Include post-processing by considering a function of the parameters: Exploit transformation rule of Fisher Information Matrix

Include post-processing by considering a function of the parameters: Exploit transformation rule of Fisher Information Matrix

$$\boldsymbol{f} = \boldsymbol{f}(\boldsymbol{\phi}) \rightarrow I_{\boldsymbol{f}} = J^T I_{\boldsymbol{\phi}} J$$

Include post-processing by considering a function of the parameters: Exploit transformation rule of Fisher Information Matrix

$$\boldsymbol{f} = \boldsymbol{f}(\boldsymbol{\phi}) \rightarrow I_{\boldsymbol{f}} = J^T I_{\boldsymbol{\phi}} J$$

Need a scalar cost function: Apply weighted trace to both sides of the CRB!

Include post-processing by considering a function of the parameters: Exploit transformation rule of Fisher Information Matrix

$$\boldsymbol{f} = \boldsymbol{f}(\boldsymbol{\phi}) \rightarrow I_{\boldsymbol{f}} = J^T I_{\boldsymbol{\phi}} J$$

Need a scalar cost function: Apply weighted trace to both sides of the CRB!

$$\operatorname{Tr}\{W\operatorname{Cov}(\hat{\boldsymbol{f}})\} \ge \frac{1}{n}\operatorname{Tr}\{WI_{\boldsymbol{f}}^{-1}\} = \frac{1}{n}C_W$$

Calculation of Fisher Information

Calculation of Fisher Information

Fisher Information Matrix w.r.t. the physical parameters

$$[I_{\phi}]_{jk} = \sum_{l} \frac{1}{p_l} \frac{\partial p_l}{\partial \phi_j} \frac{\partial p_l}{\partial \phi_k}$$

Calculation of Fisher Information

Fisher Information Matrix w.r.t. the physical parameters

$$[I_{\phi}]_{jk} = \sum_{l} \frac{1}{p_l} \frac{\partial p_l}{\partial \phi_j} \frac{\partial p_l}{\partial \phi_k}$$

Exploit parameter-shift rule^{1,2} to calculate derivatives

$$\partial_j p_l(\boldsymbol{\phi}) = \frac{1}{2} \left[p_l \left(\boldsymbol{\phi} + \frac{\pi}{2} \boldsymbol{e}_j \right) - p_l \left(\boldsymbol{\phi} - \frac{\pi}{2} \boldsymbol{e}_j \right) \right]$$

¹Schuld, Maria, et al. *Physical Review A* 99.3 (2019): 032331. ²Banchi, Leonardo, and Gavin E. Crooks. arXiv preprint arXiv:2005.10299 (2020).

The classical Fisher information matrix is calculated from the output probabilities and their derivatives w.r.t. the physical parameters

The classical Fisher information matrix is calculated from the output probabilities and their derivatives w.r.t. the physical parameters

The derivatives can be calculated on the device via the parameter-shift rule

The classical Fisher information matrix is calculated from the output probabilities and their derivatives w.r.t. the physical parameters

The derivatives can be calculated on the device via the parameter-shift rule

The classical Fisher information matrix w.r.t. post-processed parameters can be computed using the post-processing's Jacobian

The classical Fisher information matrix is calculated from the output probabilities and their derivatives w.r.t. the physical parameters

The derivatives can be calculated on the device via the parameter-shift rule

The classical Fisher information matrix w.r.t. post-processed parameters can be computed using the post-processing's Jacobian

The cost function is obtained from a weighted trace of the Cramér-Rao bound

Multiple extensions of the algorithm, for example including prior knowlege (Bayesian approach)

Multiple extensions of the algorithm, for example including prior knowlege (Bayesian approach)

A parameter-shift rule for noise channels

Multiple extensions of the algorithm, for example including prior knowlege (Bayesian approach)

A parameter-shift rule for noise channels

Details on the implementation of parameter-shift rules

Multiple extensions of the algorithm, for example including prior knowlege (Bayesian approach)

A parameter-shift rule for noise channels

Details on the implementation of parameter-shift rules

Numerical experiments that showcase the performance of the approach

Take-Home Message

Near-term quantum computers can be used to design the next generation of quantum sensors

Thank you for your attention!

🎔 @jj_xyz

Paper

Demo

Slides

Kaubrügger et al.

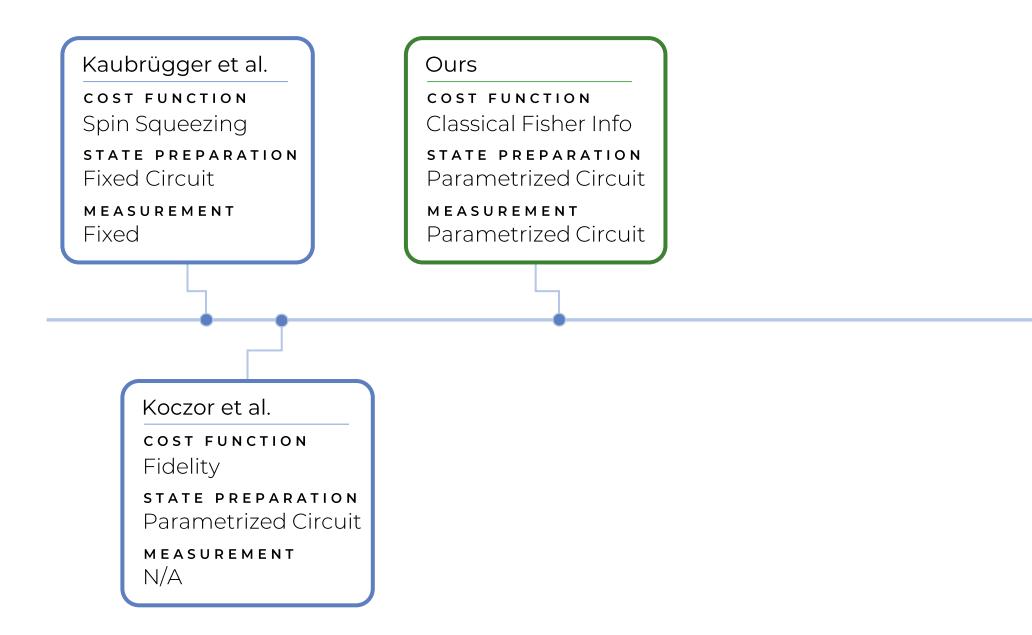
COST FUNCTION

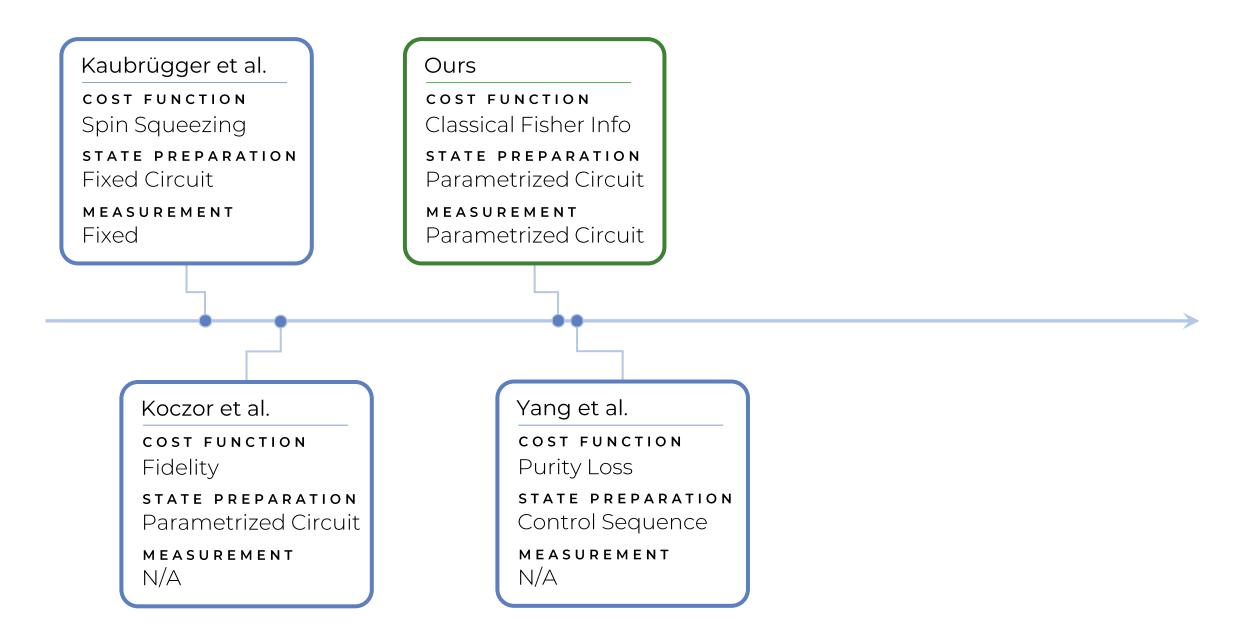
Spin Squeezing

STATE PREPARATION Fixed Circuit

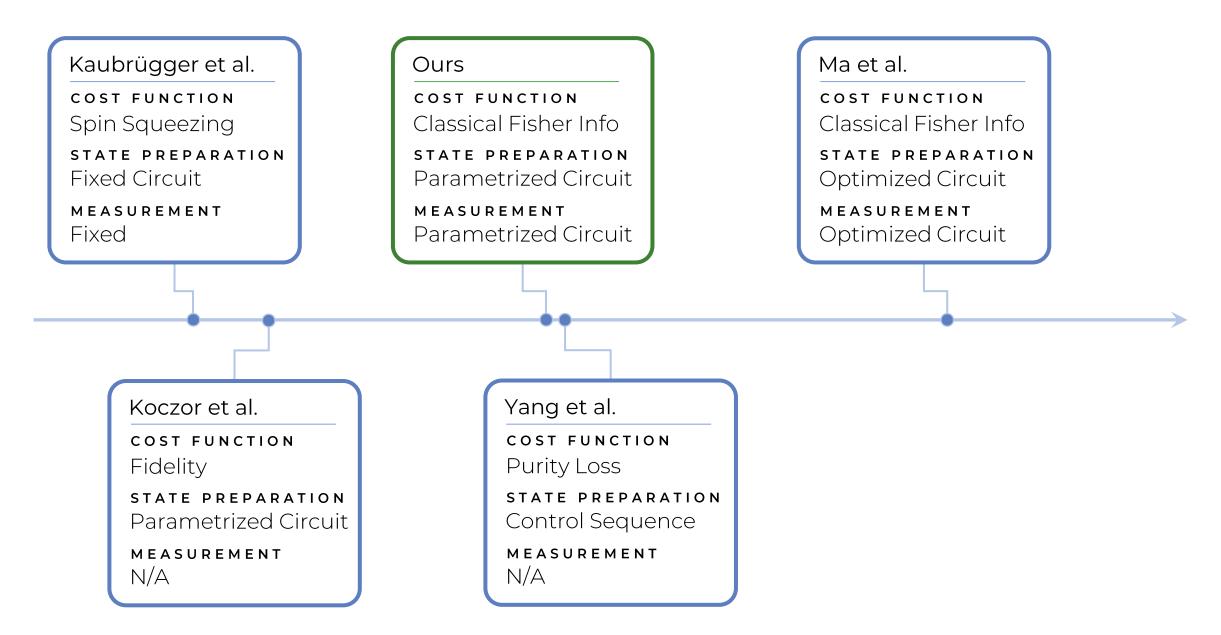
MEASUREMENT Fixed

Kaubrügger et al. COST FUNCTION Spin Squeezing STATE PREPARATION Fixed Circuit MEASUREMENT Fixed Koczor et al. COST FUNCTION Fidelity STATE PREPARATION Parametrized Circuit MEASUREMENT N/A

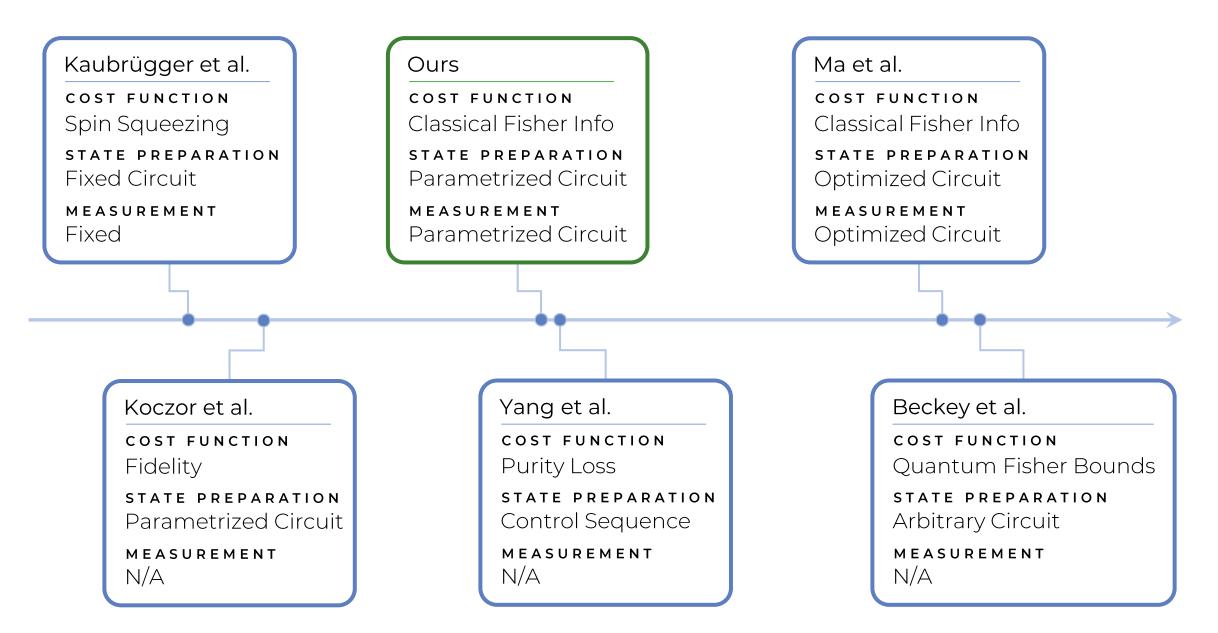




Single Parameter 🛛 🔲 Multiparameter



Single Parameter 🛛 📕 Multiparameter



Parameter-Shift Rule

Parameter-Shift Rule

