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Key Motivation

Using quantum models for learning tasks is one of the key fields where
NISQ devices are hoped to bring forth a guantum advantage

A lot of work has been done to understand the practical side, but very little
Is known on the theory side

So we asked ourselves: What functions can such models learn?
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Output State of the Quantum Model

The eigenvalues of the generator determine the frequencies
HIA) = A\
S(z)|\) = e N)

and the frequencies accumulate between layers: /The output state
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Output of the Quantum Model

Output is expectation value and therefore contains a complex conjugation

fare(x) = (Yo(x)|Mhg(z)) = Y  cu(M,0)e™"

wel)
For L layers of encoding

Q:{)\Jl _|__|_)\JL _)\kl __)\kL |Ajl7)\]€l EspeC(H)}

The accessible spectrum consists of
all sums of differences of eigenvalues
of the generator of the data encoding Y




ake-Home Message #1

Quantum learning models output
Fourier series, repeating data encoding
gives access to higher frequencies
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Pauli-Encodings

Pauli rotations are the most popular encoding strategy, e.qg.
S(x) = Rz(x) = e~ iw2/2

Pauli rotations give an integer spectrum
The number of available frequencies grows linearly in depth and width

For general encodings the dependence can be exponential:
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https://pennylane.ai/qml/demos/tutorial_expressivity_fourier_series.html
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A model with one layer of data encodings generated by a universal
Hamiltonian family and arbitrary unitaries is a universal function
approximator
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Universality of Quantum Models

A model with one layer of data encodings generated by a universal
Hamiltonian family and arbitrary unitaries is a universal function
approximator
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A universal Hamiltonian family asymptotically has access to all integer
frequencies. Repeated single-qubit Pauli rotation encodings are a universal
Hamiltonian family!



ake-Home Message #2

Quantum learning models are
universal function approximators
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Practical Implications for Model Building

Know your data encoding, it fundamentally limits what you can learn!
Powerful guantum computers can make stupid models

Rescale your data wisely

Classical pre-processing can alter the model's output dramatically
Make your observables trainable

AN NN
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Open Questions

1. Can we use this approach to calculate meaningful generalisation
Mmeasures?

2. Can we link specific ansatz classes for the trainable blocks to the output
Fourier coefficients?

IS universal approximation possible with fixed qubit numibers?
4. Are guantum models good for signal processing?
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Thank you for your attention!
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