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Quanfum Metrology

QUANTUM SENSING
Measure a physical parameter, e.g. a magnetic field

e

@ metrology
/m1 trolad i/ L QUANTUM PARAMETER ESTIMATION
noun Measure a parameter encoded in a guantum system
the scientific study of measurement.
TOMOGRAPHY

Estimate the quantum state of a system



Traditfional Quantum Metrology
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An Example

Alice prepares a plus state,
lets it evolve under a
phase Hamiltonian and
sends it to Bob via a
channel dephasing it in
the plus/minus basis

We are guaranteed there
exists an observable
diagonal in the plus/minus
basis with
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For small ¢, this observable has eigenvalues
T ~ diag(O(t), O(1/t))
Occuring with probability
P~ (0(1),0(t?))

Which means resolving t takes O(t2) samples
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What is the probability of
successful estimation?



Single-shot Quantfum Mefrology
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The PAC Meftrology Framework

___ SUCCESS PROBABILITY
77 What is the probability of obtaining an estimate

within g fixed tolerance?

ESTIMATION TOLERANCE
What is the smallest tolerance that still guarantees

a fixed success probability?

Al

SAMPLE COMPLEXITY
How many copies of a state do | need to guarantee

a fixed success probability and tolerance?

3|



Optimal Measurements

Optimal minimax success probability

4 S \
N =[max|s min/ dr Tr|p(t)Q(t+7)] ;
Q) | * J-s J
> We give a dual formulation without duality gap

> We generalize it to the parametrized channels where we
optimize over combs or strategies with indefinite causal order

tf

> We also give post-processing strategies for fixed
measurements



Connection to Hypothesis Testing

Metrology problem
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Connection to Hypothesis Testing

Multi-hypothesis
testing problem

p(t1) p(t2) p(3) t

> 20 I > 20
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We conclude that

< P({p(t:)}) as long as [t; — t;| > 26



Estimation Tolerance

So far, we analyzed the success probability at fixed
tolerance. But in applications, we often care about
the achievable precision at fixed success probability.

Minimax estimation tolerance
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Finite-sample Cramér-Rao bound
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Sample Complexity

What if we care about both the achievable precision
and the success probability? Then we have to ask
how many copies of a state we need to achieve it.
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Phase estimation
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Local evolution of Q Q @ Q
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For the regular phase Hamiltonian and t € [0, 27)
this yields a covariant set of states



Optimal Measurement

We show that the pretty good measurement
IS optimal for covariant state sets

We use this result to obtain a closed-form solution
for the minimax success probability
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Comparison of Probe States

The closed-form solution factilitates a numerical
comparison of different probe states
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Success Probability
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Estimation Tolerance
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Comparison with QCRB
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Further Results in The Paper

» We connect our quantities to single-shot entropy measures

> We lift the hypothesis testing connection to guantum
channels with different access models

» We discuss many possible extensions of our results and
definitions, e.g. the multi-parameter case

> We give an overview of open questions



Open Questions

» What measurements (i.e. POVMSs) give good out-of-the-box
performance guarantees? Pretty good measurement?

> Improved finite-sample analogues of the Cramér-Rao bound

» Understanding the advantages of adaptive processing and
entanglement

» What are the admissible scalings with mixed asymptotics?

» How do noise and error correction fit into this picture?



summary

> We give new tools to understand quantum metrology in the
single-shot regime

» Our framework is very close to guantum information theory
both In tools as in results

» A plethora of open questions ranging from practically
oriented to completely information-theoretic

> An exciting opportunity to explore new directions in quantum
metrology!
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