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Traditfional Quantum Metrology
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What is the probability of
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Single-shot Quantum Metrology
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The PAC Meftfrology Framework

_ SUCCESS PROBABILITY
77 What is the probability of obtaining an estimate

within a fixed tolerance?

ESTIMATION TOLERANCE
What is the smallest tolerance that still guarantees

a fixed success probability?
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SAMPLE COMPLEXITY
How many copies of a state do | need to guarantee

a fixed success probability and tolerance?
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Optimal Measurements

Optimal minimax success probability
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Constitutes a semi-infinite program,
think a continuous semi-definite program

> We give a dual formulation without duality gap

> We generalize it to the parametrized channels where we optimize over
combs or strategies with indefinite causal order

» We also give post-processing strategies for fixed measurements



Fixed Measurements

Parametrized state Fixed measurement Post-processing
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Optimal post-processing is given by the
smoothed maximum a-posteriori estimator
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Connection to Hypothesis Testing

Metrology problem
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Connection to Hypothesis Testing

Multi-hypothesis
testing problem
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Estimation Tolerance

So far, we analyzed the success probability at fixed
tolerance. But in applications, we often care about
the achievable precision at fixed success probability.

Minimax estimation tolerance
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Finite-sample Cramér-Rao bound
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Sample Complexity

What if we care about both the achievable precision
and the success probability? Then we have to ask
how many copies of a state we need to achieve it.
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Phase estimation
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For the regular phase Hamiltonian and t € [0, 27)
this yields a covariant set of states



Optimal Measurement

We show that the pretty good measurement
IS optimal for covariant state sets

We use this result to obtain a closed-form solution
for the minimax success probability
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Comparison of Prolbbe States

The closed-form solution factilitates a numerical
comparison of different probe states
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Success Probability
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Estimation Tolerance
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Further Results in tThe Paper

» We connect our quantities to single-shot entropy measures

> We lift the hypothesis testing connection to guantum
channels with different access models

» We discuss many possible extensions of our results and
definitions, e.g. the multi-parameter case

> We give an overview of open guestions



Open Questions

» What measurements (i.e. POVMSs) give good out-of-the-box
performance guarantees? Pretty good measurement?

» Improved finite-sample analogues of the Cramér-Rao bound

» Understanding the advantages of adaptive processing and
entanglement

» What are the admissible scalings with mixed asymptotics?



summary

> We give new tools to understand quantum metrology in the
single-shot regime

» Our framework Is very close to guantum information theory
both In tools as in results

» A plethora of open questions ranging from practically
oriented to completely information-theoretic

> An exciting opportunity to explore new directions in quantum
metrology!
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Asympftotics

Asymptotic rate at constant tolerance Hypothesis testing bound implies
_ 1 _
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We give the following achievable lower bound
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This allows us to compt Hypothesis testing rate for a given measurement sequence
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Access Modes for Channels

/ causal superposition
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Comparison with QCRB
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