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Parametrized Quantum States

Parametrization Measurement
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Distances Between Parametrized States

We want to understand parametrized guantum states in parameter
space. One way to do so is via distances

> Perform a pullback of a distance between qguantum states
d(0,8") = d(p(0),p(8"))
5> Or between the output probability distributions

dpm(0,0") = d(pm(6), pra(0"))

We require d(0,0') >0, d(0,0) = 0, differentiability and monotonicity.



Small Changes

What happens in the local neighbourhood of the parameter 87
> Let's look at perturbation of pullback distance — a Taylor expansion gives
1 o7 3
(6.6 +8) = 871 (8)8 + O(]8]°)
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Information Matrices
The Hessian induces an inner product (8,48 )y = 6 M&

With it we can measure
lengths |6]| = /{9, 6)
distances  d(8,8') = [|6 — &' = /(5 — &', — &)
angles  <1(8,8") = arccos((8,8")/||6][|8])

The Hessian contains information about the underlying guantum state, by
nature an information-theoretic object. We thus call it information matrix.



Classical Fisher Information Matrix

Use the KL divergence (relative entropy) for the pullback

dKL( Z pz 9))

And find the classical Fisher information matrix (CFIM) with entries

= 1 Opi(0) Opi(0)
1 (8) =) pi(6) 59@- alej

INntuition: the classical Fisher information quantifies
how much a change of parameters changes the
underlying probability distribution



Unigueness

What happens if we perform the same with the Bhattacharyya distance?

dn(p(8).p(6) =1 S \/m(0)ni(6)

We again find the classical Fisher information matrix times a constant!

Theorem (Morozova/Chentsov):

The information matrix associated to any monotonic distance measure
between probability distributions will be a positive scalar multiple of the
classical Fisher information matrix

Monotonicity: d(T'|p|, T|q]) < d(p, q) for all stochastic maps T



Calculation

To calculate the classical Fisher information matrix, we need

__— Output of experiment (histogram)
output probabilities

pl(g) —,_ Can also use more sophisticated technigues:
Bayesian approach, Machine Learning

_— Finite differences
their derivatives

a'pl 7
‘ ( ) T Parameter shift rule



Quantum Fisher Information Matrix (Pure States)

Use twice the fidelity distance for the pullback
2d([1(6)),11(0"))) = 2 — 2[(1(0)[4(6))|”

And find the guantum Fisher information matrix (QFIM) with entries

Fij(8) = 4 Re[(0:1(0)|0;4(0)) — (9:1(0)|1(8) X (0)|0;(0))]

INntuition: the quantum Fisher information quantifies
how much a change of parameters changes the
underlying qguantum state



Non-Unigueness

Theorem (Petz):

There are infinitely many information matrices arising from monotonic
distances between guantum states.

Monotonicity: d(®|p], ®|c]) < d(p, o) for all guantum channels ®

LOur® guantum Fisher information matrix is also known as SLD-QFIM,

because it can also be defined via the symmetric logarithmic derivative
operators

1 dop 1
Fij =5 Tolp(Lilj + LiLi)} - = 5(Lip + pLi)




Calculation (Pure States)

For parameters are encoded via parallel Hamiltonian evolution

{Hz,H}W( 0)) — ((0)|Hil1(0))1:(6)H;|v(6)))

Fij(8) = 4[((0))]

We can also use perturbations of the fidelity distance itself and tricks using
the parameter-shift rule. To get approximation on the matrix level, an
analogue of SPSA can be used.



Classical and Quantum Fisher Information

Monotonicity of the underlying distance measure implies that

I(T[p(0)]) < I(p(@)) for all stochastic maps T

F(®[p(0)]) < F(p(B)) forall guantum channels @
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Classical and Quantum Fisher Information

Monotonicity of the underlying distance measure implies that

I(T[p(0)]) < I(p(@)) for all stochastic maps T

F(®[p(0)]) < F(p(B)) forall guantum channels @

But measurements are also channels and the guantum Fisher information
for a classical state is equal to the classical Fisher information. Therefore

FM|p(0)]) = I(M[p(0)]) < F(p(6))

The guantum Fisher information is therefore an upper bound for any
classical Fisher information matrix arising from a measurement.



Roles of Classical and Quantum Fisher Information

F(0)

QUANTUM FISHER INFORMATION

(6)

CLASSICAL FISHER INFORMATION
Quantifies ultimate limits for

a specific underlying state Quantifies behaviour for

a fixed measurement
Can tell us a lot about the

quantum effects influencing Extremely relevant in practice,

our experiments as we always have to fix some
sort of measurement



Quantum Fisher Information (Noisy States)

Noise decreases the guantum Fisher information due to monotonicity.
For mixed states, we use the Bures distance

205(p(6), p(6)) = 2 — 2T {\/ \/pw)p(e')\/p(e)}

The resulting quantum Fisher information for a state p = >, Ak| A\ X Ak| is

h 2 Re({Ag|0ip| A XN |0 0| Ak ))
Sij = Z A+ A

kl
A+ #£0



Quantum Fisher Information (Noisy States)

We can simplify this further

(0, )\k (0, )\k)
Fij|= Z
% )\k;,go ) Quantum Part

+ 4\, Re({0; Ak 0j\r))

~
Classical Part




Calculation (Noisy States)

N principle, full tomography is necessary to calculate the guantum Fisher
information for noisy states

Variational methods have been proposed, but with high overheads and
relying on the success of variational subroutines

An alternative is to approximate the quantum Fisher information, e.g. via
the truncated guantum Fisher information



Application 1: Quantum Metrology

Physical quantities (magnetic fields, energies, ...) ©» metrology
need to be measured accurately /mt trolad3i

Study how quantum effects can help o

the scientific study of measurement.

Probe Encoding Output
State Evolution Measurement Distribution

p — E(@) — M — pi(®)



Gathering Intuition
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Cramer-Rao Bound

Formally, we construct an estimator for the physical guantity from the
output probability distribution

p(9) — @ unbiased if E{gb} = ¢

The Crameér-Rao bound limits the precision of any unbiased estimator

“Iu(@) > F(e)!

Covlp| > —
n

Tr{Cov|gp|} = MSE|¢]



Standard Quantum and Heisenberg Limit

Repeating the same experiment N times results in a scaling

1
Cov|@| ox — STANDARD QUANTUM LIMIT (SQL)

T

With entanglement, we can reach

. 1
Cov[p] o« —  HEISENBERG LIMIT (HL)

n

This advantage is not resistant to noise. But it can be recovered using
metrological codes.



Application 2: Quantum Natural Gradient
Gradient descent is a general-purpose method to minimize a cost function
p(t+1) — g(t) _ UVC(O(t))

We can reformulate the gradient update as an optimization problem

oli+1) _ argéniﬂ {[(’9 B g(t)’VC(O(t)»] [ |9 — 0" |2]}

Minimal for update Regularisation to
opposite to gradient avoid overstepping



Quantum Natural Gradient Update

But we started this talk realizing that measuring distances between
parmeters makes more sense it we take the pullback of a distance
between quantum states! Replacing

19— 03 with de(9,0") ~ (¥ — 0NTFOD) (9 —0W)
iNn the optimization yields the guantum natural gradient update step

p(tt1) —_ g(t) _ n}*(g(t))—lvc(g(t))

This update now takes the underlying geometry of the parametrized
guantum state into account



Quantum Natural Gradient Helps
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Further Reading

There are many great reviews about guantum Fisher information:

J. Liu, H. Yuan, X.-M. Lu, and X. Wang (=] g5 =]
Quantum fisher information matrix and multiparameter estimation i‘:. :
Journal of Physics A: Mathematical and Theoretical 53, 023001 (2020) [=]1

J.S. Sidhu and P. Kok
Ceometric perspective on quantum parameter estimation
AVS Quantum Science 2, 014701 (2020)

V. Katariya and M. M. Wilde

Ceometric distinguishability measures limit guantum
channel estimation and discrimination

Quantum Information Processing 20, 78 (2021)



https://doi.org/10.1116/1.5119961
doi.org/10.1088/1751-8121/ab5d4d
https://doi.org/10.1007/s11128-021-02992-7

Outlook

Fisher information is a very versatile tool that has found a lot of cool
applications in various fields, for example theoretical guantum
iNnformation, error correction and resource theories

Parametrized guantum states are fundamental to NISQ applications, so |
expect many more interesting applications of Fisher information

Many open gquestions remain and much more work is to be done!



Some Open Questions

Analysis of estimators for the classical Fisher information

A (more) efficient way to calculate the quantum Fisher information in the
Noisy setting

Can we use neural network guantum states or other computational
approximations to compute the guantum Fisher information?

Can we reproduce proofs of important theorems using Fisher
information?

Can we use (quantum) Fisher information to understand ansatze and
layers for variational quantum algorithms?

Can we leverage (quantum) Fisher information to better quantify the
capabilities of learning models based on parametrized quantum circuits?



Thank you for your attention!
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